Log in

MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression

  • Original Article
  • Published:
Tumor Biology

Abstract

Epithelial ovarian cancer (EOC) is a common type of gynecologic cancer, which accounts for the majority of deaths among all gynecologic malignant tumors in developed countries. A series of recent studies suggested that miR-381 might play important roles in the development of various cancer types. However, the biological function of miR-381 in EOC remains to be investigated. We examined the levels of miR-381 expression in EOC tissues and cell lines. We identified miR-381 target genes by bioinformatic prediction. We also characterized the phenotype regarding cell proliferation, cell migration, and cell invasion in EOC cells lines with altered expression levels of both miR-381 and its target gene, YY1. The expression levels of miR-381 were downregulated in EOC tissues and cell lines. Overexpression of miR-381 significantly inhibited EOC cell proliferation, migration, and invasion. Restoration of YY1 expression partially reversed the phenotype induced by miR-381 overexpression. Knockdown of miR-381 target gene, YY1, mimicked the phenotype induced by miR-381 overexpression. MiR-381 regulated EOC cell through miR-381/YY1/p53 and miR-381/YY1/Wnt signaling axis. We concluded that miR-381 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing YY1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Granato T, Midulla C, Longo F, Colaprisca B, Frati L, Anastasi E. Role of he4, ca72.4, and ca125 in monitoring ovarian cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2012;33:1335–9.

    Article  CAS  Google Scholar 

  2. Bristow RE. Surgical standards in the management of ovarian cancer. Curr Opin Oncol. 2000;12:474–80.

    Article  CAS  PubMed  Google Scholar 

  3. Chang SJ, Bristow RE. Evolution of surgical treatment paradigms for advanced-stage ovarian cancer: redefining 'optimal' residual disease. Gynecol Oncol. 2012;125:483–92.

    Article  PubMed  Google Scholar 

  4. Harter P, Muallem ZM, Buhrmann C, Lorenz D, Kaub C, Hils R, et al. Impact of a structured quality management program on surgical outcome in primary advanced ovarian cancer. Gynecol Oncol. 2011;121:615–9.

    Article  PubMed  Google Scholar 

  5. Harries M, Gore M. Part i: chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet Oncol. 2002;3:529–36.

    Article  CAS  PubMed  Google Scholar 

  6. Matei DE, Nephew KP. Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecol Oncol. 2010;116:195–201.

    Article  CAS  PubMed  Google Scholar 

  7. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microrna biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  8. Osada H, Takahashi T. Micrornas in biological processes and carcinogenesis. Carcinogenesis. 2007;28:2–12.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Tang Q, Qin D, Yu L, Huang R, Lv G, et al. Role of microrna 30a targeting insulin receptor substrate 2 in colorectal tumorigenesis. Mol Cell Biol. 2015;35:988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sui X, Wang X, Han W, Li D, Xu Y, Lou F, et al. Micrornas-mediated cell fate in triple negative breast cancers. Cancer Lett. 2015;361:8–12.

    Article  CAS  PubMed  Google Scholar 

  11. Iorio MV, Croce CM. Microrna involvement in human cancer. Carcinogenesis. 2012;33:1126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee SH, Jung YD, Choi YS, Lee YM. Targeting of runx3 by mir-130a and mir-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget. 2015.

  13. Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, et al. Mir-603 promotes glioma cell growth via wnt/beta-catenin pathway by inhibiting wif1 and ctnnbip1. Cancer Lett. 2015;360:76–86.

    Article  CAS  PubMed  Google Scholar 

  14. Liu YN, Yin J, Barrett B, Sheppard-Tillman H, Li D, Casey OM, et al. Loss of androgen-regulated microrna 1 activates src and promotes prostate cancer bone metastasis. Mol Cell Biol. 2015;35:1940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li X, Li H, Zhang R, Liu J. Microrna-449a inhibits proliferation and induces apoptosis by directly repressing e2f3 in gastric cancer. Cell Physiol Biochem Int J Exp Cell Physiol, Biochem Pharmacol. 2015;35:2033–42.

    Article  CAS  Google Scholar 

  16. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, et al. Interaction of hsa-mir-381 and glioma suppressor lrrc4 is involved in glioma growth. Brain Res. 2011;1390:21–32.

    Article  CAS  PubMed  Google Scholar 

  17. Liang Y, Zhao Q, Fan L, Zhang Z, Tan B, Liu Y, et al. Down-regulation of microrna-381 promotes cell proliferation and invasion in colon cancer through up-regulation of lrh-1. Biomed Pharmacother Biomed Pharmacotherapie. 2015;75:137–41.

    Article  CAS  Google Scholar 

  18. Rothschild SI, Tschan MP, Jaggi R, Fey MF, Gugger M, Gautschi O. Microrna-381 represses id1 and is deregulated in lung adenocarcinoma. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer. 2012;7:1069–77.

    Article  CAS  Google Scholar 

  19. Chen B, Liu B. [mirna-381 inhibits the invasion of renal carcinoma and the underlying mechanisms]. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci. 2015;40:1053–9.

    CAS  Google Scholar 

  20. Chen B, Duan L, Yin G, Tan J, Jiang X. Simultaneously expressed mir-424 and mir-381 synergistically suppress the proliferation and survival of renal cancer cells—cdc2 activity is up-regulated by targeting wee1. Clinics. 2013;68:825–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Donohoe ME, Zhang X, McGinnis L, Biggers J, Li E, Shi Y. Targeted disruption of mouse yin yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol. 1999;19:7237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi Y, Seto E, Chang LS, Shenk T. Transcriptional repression by yy1, a human gli-kruppel-related protein, and relief of repression by adenovirus e1a protein. Cell. 1991;67:377–88.

    Article  CAS  PubMed  Google Scholar 

  23. Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor yy1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006;25:1125–42.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Stovall DB, Inoue K, Sui G. The oncogenic role of yin yang 1. Crit Rev Oncog. 2011;16:163–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sui G, el Affar B, Shi Y, Brignone C, Wall NR, Yin P, et al. Yin yang 1 is a negative regulator of p53. Cell. 2004;117:859–72.

    Article  CAS  PubMed  Google Scholar 

  26. Yakovleva T, Kolesnikova L, Vukojevic V, Gileva I, Tan-No K, Austen M, et al. Yy1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun. 2004;318:615–24.

    Article  CAS  PubMed  Google Scholar 

  27. Yokoyama NN, Pate KT, Sprowl S, Waterman ML. A role for yy1 in repression of dominant negative lef-1 expression in colon cancer. Nucleic Acids Res. 2010;38:6375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, et al. Microrna-7 is a novel inhibitor of yy1 contributing to colorectal tumorigenesis. Oncogene. 2013;32:5078–88.

    Article  CAS  PubMed  Google Scholar 

  29. Kang W, Tong JH, Chan AW, Zhao J, Dong Y, Wang S, et al. Yin yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med. 2014;12:80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang H, Wang Z, Liu Q, Liu X, Wu M, Li G. Disturbing mir-182 and −381 inhibits brd7 transcription and glioma growth by directly targeting lrrc4. PLoS One. 2014;9, e84146.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang HQ, Wang RJ, Diao CF, Li JW, Su JL, Zhang S. The pttg1-targeting mirnas mir-329, mir-300, mir-381, and mir-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/pttg1 regulation feedback loop. Oncotarget. 2015;6:29413–27.

    PubMed  PubMed Central  Google Scholar 

  32. Vilming Elgaaen B, Olstad OK, Haug KB, Brusletto B, Sandvik L, Staff AC, et al. Global mirna expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed mirnas including mir-200c-3p as a prognostic marker. BMC Cancer. 2014;14:80.

    Article  PubMed  PubMed Central  Google Scholar 

  33. **a B, Yang S, Liu T, Lou G. Mir-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting cyclin d1 and cdk6. Mol Cancer. 2015;14:57.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang CC, Chen JJ, Yang PC. Multifunctional transcription factor yy1: a therapeutic target in human cancer? Expert Opin Ther Targets. 2006;10:253–66.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Ohms SJ, Li Z, Wang Q, Gong G, Hu Y, et al. Changes in the expression of mir-381 and mir-495 are inversely associated with the expression of the mdr1 gene and development of multi-drug resistance. PLoS One. 2013;8, e82062.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG. Aberrant expression of hdmx proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001;61:1839–42.

    CAS  PubMed  Google Scholar 

  37. Ryu SY, Kim K, Lee WS, Kwon HC, Lee KH, Kim CM, et al. Synergistic growth inhibition by combination of adenovirus mediated p53 transfer and cisplatin in ovarian cancer cell lines. J Gynecol Oncol. 2009;20:48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Z, Gersbach E, Zhang X, Xu X, Dong R, Lee P, et al. Mir-106a represses the rb tumor suppressor p130 to regulate cellular proliferation and differentiation in high-grade serous ovarian carcinoma. Mol Cancer Res : MCR. 2013;11:1314–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee MH, Choi BY, Cho YY, Lee SY, Huang Z, Kundu JK, et al. Tumor suppressor p16(ink4a) inhibits cancer cell growth by downregulating eef1a2 through a direct interaction. J Cell Sci. 2013;126:1744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, et al. Kpna2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-myc and downregulation of foxo3a. Cell Death Dis. 2013;4, e745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gan Y, Mo Y, Johnston J, Lu J, Wientjes MG, Au JL. Telomere maintenance in telomerase-positive human ovarian skov-3 cells cannot be retarded by complete inhibition of telomerase. FEBS Lett. 2002;527:10–4.

    Article  CAS  PubMed  Google Scholar 

  42. Oishi T, Kigawa J, Minagawa Y, Shimada M, Takahashi M, Terakawa N. Alteration of telomerase activity associated with development and extension of epithelial ovarian cancer. Obstet Gynecol. 1998;91:568–71.

    CAS  PubMed  Google Scholar 

  43. Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF. Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer : Off J Int Gynecol Cancer Soc. 2008;18:954–62.

    Article  CAS  Google Scholar 

  44. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mrnas are conserved targets of micrornas. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microrna target predictions. Nat Genet. 2005;37:495–500.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (no. 81472028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Lou.

Ethics declarations

This study was approved by the Medical Ethics Committee of the Affiliated Tumor Hospital of Harbin Medical University and all patients were provided informed consent.

Conflicts of interest

None

Additional information

Bairong **a and Huiyan Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure 1

miR-381 decreases downstream genes of Wnt signaling pathway in both SKOV3 and COV644 cells. *p < 0.05 compared to miR-Ctrl transfected cells (GIF 17 kb)

High resolution (TIF 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, B., Li, H., Yang, S. et al. MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumor Biol. 37, 9157–9167 (2016). https://doi.org/10.1007/s13277-016-4805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4805-8

Keywords

Navigation