Log in

Effect of lomeguatrib–temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Temozolomide (TMZ) is commonly used in the treatment of glioblastoma (GBM). The MGMT repair enzyme (O 6-methylguanine-DNA methyltransferase) is an important factor causing chemotherapeutic resistance. MGMT prevents the formation of toxic effects of alkyl adducts by removing them from the DNA. Therefore, MGMT inhibition is an interesting therapeutic approach to circumvent TMZ resistance. The aim of the study was to investigate the effect of the combination of lomeguatrib (an MGMT inactivator) with TMZ, on MGMT expression and methylation. Primary cell cultures were obtained from GBM tumor tissues. The sensitivity of primary GBM cell cultures and GBM cell lines to TMZ, and to the combination of TMZ and lomeguatrib, was determined by a cytotoxicity assay (MTT). MGMT and p53 expression, and MGMT methylation were investigated after drug application. In addition, the proportion of apoptotic cells and DNA fragmentation was analyzed. The combination of TMZ and lomeguatrib in primary GBM cell cultures and glioma cell lines decreased MGMT expression, increased p53 expression, and did not change MGMT methylation. Moreover, apoptosis was induced and DNA fragmentation was increased in cells. In addition, we also showed that lomeguatrib–TMZ combination did not have any effect on the cell cycle. Finally, we determined that the sensitivity of each primary GBM cells and glioma cell lines to the lomeguatrib–TMZ combination was different and significantly associated with the structure of MGMT methylation. Our study suggests that lomeguatrib can be used with TMZ for GBM treatment, although further clinical studies will be needed so as to determine the feasibility of this therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosell R, De Las PR, Balana C, Santarpia M, Salazar F, de Aguirre I, et al. Translational research in glioblastoma multiforme: molecular criteria for patient selection. Future Oncol. 2008;4:219–28.

    Article  PubMed  CAS  Google Scholar 

  2. Iacob G, Dinca EB. Current data and strategy in glioblastoma multiforme. J Med Life. 2009;2:386–93.

    PubMed  Google Scholar 

  3. Krakstad C, Chekenya M. Survival signaling and apoptosis resistance in glioblastoma: oppurtunities for targeted therapeutics. Mol Cancer. 2010;9:135.

    Article  PubMed  Google Scholar 

  4. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AA, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18:1061–83.

    Article  PubMed  CAS  Google Scholar 

  5. Omay SB, Vogelbaum MA. Current concepts and newer developments in the treatment of malignant gliomas. Indian J Cancer. 2009;46:88–95.

    Article  PubMed  CAS  Google Scholar 

  6. Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res. 2007;56:275–87.

    Article  PubMed  CAS  Google Scholar 

  7. Kaina B, Margison GP, Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci. 2010;67:3663–81.

    Article  PubMed  CAS  Google Scholar 

  8. Bredel M. Anticancer drug resistance in primary human brain tumors. Brain Res Rev. 2001;35:161–204.

    Article  PubMed  CAS  Google Scholar 

  9. Kaina B, Christmann M, Naumann S, Roos WP. MGMT: Key node in the battle against genotoxicity carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 2007;6:1079–99.

    Article  PubMed  CAS  Google Scholar 

  10. Mitra S. MGMT: a personal perspective. DNA Repair. 2007;6:1064–70.

    Article  PubMed  CAS  Google Scholar 

  11. Watson AJ, Middleton MR, McGown G, Thorncroft M, Ranson M, Hersey P, et al. O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer. 2009;100:1250–6.

    Article  PubMed  CAS  Google Scholar 

  12. Tubbs JL, Pegg AE, Tainer JA. DNA binding nucleotide flip** and the helix–turn–helix motif in the base repair O 6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair. 2007;6:1100–15.

    Article  PubMed  CAS  Google Scholar 

  13. Verbeek B, Soutgate TD, Gilham DE, Margison GF. O 6-mehylguanine-DNA methytransferase inactivation and chemotherapy. Br Med Bull. 2008;85:17–33.

    Article  PubMed  CAS  Google Scholar 

  14. Khan O, Middleton MR. The therapeutic potential of O 6-alkylguanine DNA alkyltransferase inhibitors. Expert Opin Investig Drugs. 2007;16:1573–84.

    Article  PubMed  CAS  Google Scholar 

  15. Clemons M, Kelly J, Watson AJ, Howell A, Mcelhinney RS, Mcmurry TB, et al. O 6-(4-bromothenyl) guanine reverses temozolomide resistance in human breast tumour MCF-7 cells and xenografts. Br J Cancer. 2005;93:1152–6.

    Article  PubMed  CAS  Google Scholar 

  16. Ranson M, Hersey P, Thompson D, Beith J, Mcarthur GA, Haydon A, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. J Clin Oncol. 2007;25:2540–5.

    Article  PubMed  CAS  Google Scholar 

  17. Caporaso P, Turriziani M, Venditti A, Marchesi F, Buccisano F, Tirindelli MC, et al. Novel role of triazenes in haematological malignancies: pilot study of Temozolomide Lomeguatrib and IL-2 in the chemo-immunotherapy of acute leukaemia. DNA Repair. 2007;6:1179–86.

    Article  PubMed  CAS  Google Scholar 

  18. Khan OA, Ranson M, Michael M, Olver I, Levitt NC, Mortimer P, et al. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br J Cancer. 2008;98:1614–8.

    Article  PubMed  CAS  Google Scholar 

  19. van Noort JM. Human glial cell culture models of inflammation in the central nervous system. Drug Discov Today. 2006;11:74–80.

    Article  PubMed  Google Scholar 

  20. De Witt Hamer PC, van Tilborg AA, Eijk PP, Sminia P, Troost D, van Noorden CJ, et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008;27:2091–6.

    Article  PubMed  Google Scholar 

  21. Bakir A, Gezen F, Yildiz O, Ayhan A, Kahraman S, Kruse CA, et al. Establishment and characterization of a human glioblastoma multiforme cell line. Cancer Genet Cytogenet. 1998;103:46–51.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L, Yamane T, Satoh E, Amagasaki K, Kawataki T, Asahara T, et al. Establishment and partial characterization of five malignant glioma cell lines. Neuropathology. 2005;25:136–43.

    Article  PubMed  Google Scholar 

  23. Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, et al. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32.

    Article  PubMed  Google Scholar 

  24. Fael Al-Mayhani TM, Ball SL, Zhao JW, Fawcett J, Ichimura K, Collins PV, et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J Neurosci Methods. 2009;176:192–9.

    Article  PubMed  CAS  Google Scholar 

  25. Qin K, Jiang X, Zou Y, Wang J, Qin L, Zeng Y. Study on the proliferation and drug-resistance of human brain tumor stem-like cells. Cell Mol Neurobiol. 2010;30:955–60.

    Article  PubMed  CAS  Google Scholar 

  26. Di Tomaso E, Pang JC, Lam HK, Tian XX, Suen KW, Hui AB, et al. Establishment and characterization of a human cell line from paediatric cerebellar glioblastoma multiforme. Neuropathol Appl Neurobiol. 2000;26:22–30.

    Article  PubMed  Google Scholar 

  27. Bouterfa H, Picht T, Kess D, Herbold C, Noll E, Black PM, et al. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery. 2000;46:419–30.

    Article  PubMed  CAS  Google Scholar 

  28. Wang J, Wang X, Jiang S, Lin P, Zhang J, Wu Y, et al. Establishment of a new human glioblastoma multiforme cell line (WJ1) and its partial characterization. Cell Mol Neurobiol. 2007;27:831–43.

    Article  PubMed  CAS  Google Scholar 

  29. Hagemann C, Anacker J, Haas S, Riesner D, Schömig B, Ernestus RI, et al. Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures. BMC Res Notes. 2010;3:293.

    Article  PubMed  Google Scholar 

  30. Pédeboscq S, L'azou B, Liguoro D, Pometan JP, Cambar J. Interindividual differences in anticancer drug cytotoxicity in primary human glioblastoma cells. Exp Toxicol Pathol. 2007;58:247–53.

    Article  PubMed  Google Scholar 

  31. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article  PubMed  CAS  Google Scholar 

  32. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, et al. Correlation of O 6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.

    Article  PubMed  CAS  Google Scholar 

  33. Kitange GJ, Carlson BL, Mladek AC, Decker PA, Schroeder MA, Wu W, et al. Evaluation of MGMT promoter methylation status and correlation with temozolomide response in orthotopic glioblastoma xenograft model. J Neurooncol. 2009;92:23–31.

    Article  PubMed  CAS  Google Scholar 

  34. Esteller M, Hamilton SR, Burger PC, Baylın SB, Herman JG. Inactivation of the DNA repair gene O 6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793–7.

    PubMed  CAS  Google Scholar 

  35. Paz MF, Yaya-Tur R, Rojas-Marcos I, Reynes G, Pollan M, Aguirre-Cruz L, et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res. 2004;10:4933–8.

    Article  PubMed  CAS  Google Scholar 

  36. Dunn J, Baborie A, Alam F, Joyce K, Moxham M, Sibson R, et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br J Cancer. 2009;101:124–31.

    Article  PubMed  CAS  Google Scholar 

  37. Karayan-Tapon L, Quillien V, Guilhot J, Wager M, Fromont G, Saikali S, et al. Prognostic value of O 6-methylguanine-DNA methyltransferase status in glioblastoma patients assessed by five different methods. J Neurooncol. 2010;97:311–22.

    Article  PubMed  CAS  Google Scholar 

  38. van Nifterik KA, van den Berg J, van der Meide WF, Ameziane N, Wedekind LE, Steenbergen RD, et al. Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer. 2010;103:29–35.

    Article  PubMed  Google Scholar 

  39. Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, et al. O6-Methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem. 2006;96:766–76.

    Article  PubMed  CAS  Google Scholar 

  40. Yoshino A, Ogino A, Yachi K, Ohta T, Fukushima T, Watanabe T, et al. Gene expression profiling predicts response to temozolomide in malignant gliomas. Int J Oncol. 2010;36:1367–77.

    Article  PubMed  CAS  Google Scholar 

  41. Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist. 2000;5:144–51.

    Article  PubMed  CAS  Google Scholar 

  42. Ranson M, Middleton MR, Bridgewater J, Lee SM, Dawson M, Jowle D, et al. Lomeguatrib a potent inhibitor of O 6-alkylguanine-DNA-alkyltransferase: phase I safety pharmacodynamic and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. 2006;12:1577–84.

    Article  PubMed  CAS  Google Scholar 

  43. Sabharwal A, Corrie PG, Midgley RS, Palmer C, Brady J, Mortimer P, et al. A phase I trial of lomeguatrib and irinotecan in metastatic colorectal cancer. Cancer Chemother Pharmacol. 2010;66:829–35.

    Article  PubMed  CAS  Google Scholar 

  44. Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, et al. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res. 2010;16:743–9.

    Article  PubMed  CAS  Google Scholar 

  45. Barvaux VA, Lorigan P, Ranson M, Gillum AM, Mcelhinney RS, Mcmurry TB, et al. Sensitization of a human ovarian cancer cell line to temozolomide by simultaneous attenuation of the Bcl-2 antiapoptotic protein and DNA repair by O 6-alkylguanine-DNA alkyltransferase. Mol Cancer Ther. 2004;3:1215–20.

    PubMed  CAS  Google Scholar 

  46. Konduri SD, Ticku J, Bobustuc GC, Sutphin RM, Colon J, Isley B, et al. Blockade of MGMT expression by O 6 benzyl guanine leads to inhibition of pancreatic cancer growth and induction of apoptosis. Clin Cancer Res. 2009;15:6087–95.

    Article  PubMed  CAS  Google Scholar 

  47. Pagani E, Pepponi R, Fuggetta MP, Prete SP, Turriziani M, Bonmassar L, et al. DNA repair enzymes and cytotoxic effects of temozolomide: comparative studies between tumor cells and normal cells of the immune system. J Chemother. 2003;15:173–83.

    PubMed  CAS  Google Scholar 

  48. Middleton MR, Thatcher N, McMurry TB, McElhinney RS, Donnelly DJ, Margison GP. Effect of O 6-(4-bromothenyl)guanine on different temozolomide schedules in a human melanoma xenograft model. Int J Cancer. 2002;100:615–7.

    Article  PubMed  CAS  Google Scholar 

  49. Woolford LB, Southgate TD, Margison GP, Milsom MD, Fairbairn LJ. The P140K mutant of human O(6)-methylguanine-DNA-methyltransferase (MGMT) confers resistance in vitro and in vivo to temozolomide in combination with the novel MGMT inactivator O(6)-(4-bromothenyl)guanine. J Gene Med. 2006;8:29–34.

    Article  PubMed  CAS  Google Scholar 

  50. Danam RP, Qian XC, Howell SR, Brent TP. Methylation of selected CpGs in the human O 6-methylguanine-DNA methyltransferase promoter region as a marker of gene silencing. Mol Carcinog. 1999;24:85–9.

    Article  PubMed  CAS  Google Scholar 

  51. Srivenugopal KS, Shou J, Mullapudi SR, Lang Jr FF, Rao JS, Ali-Osman F. Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res. 2001;7:1398–409.

    PubMed  CAS  Google Scholar 

  52. Bocangel D, Sengupta S, Mitra S, Bhakat KK. p53-Mediated down-regulation of the human DNA repair gene O 6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res. 2009;29:3741–50.

    PubMed  CAS  Google Scholar 

  53. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O 6-methylguanine. Oncogene. 2007;26:186–97.

    Article  PubMed  CAS  Google Scholar 

  54. Papait R, Magrassi L, Rigamonti D, Cattaneo E. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells. Biochem Biophys Res Commun. 2009;379:434–9.

    Article  PubMed  CAS  Google Scholar 

  55. Blough MD, Beauchamp DC, Westgate MR, Kelly JJ, Cairncross JG. Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol. 2011;102(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  56. Grombacher T, Eichhorn U, Kaina B. p53 is involved in regulation of the DNA repair gene O 6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene. 1998;17:845–51.

    Article  PubMed  CAS  Google Scholar 

  57. Harris LC, Remack JS, Houghton PJ, Brent TP. Wild-type p53 suppresses transcription of the human O 6-methylguanine-DNA methyltransferase gene. Cancer Res. 1996;56:2029–32.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Laura Stokes for help with editing the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Taspinar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taspinar, M., Ilgaz, S., Ozdemir, M. et al. Effect of lomeguatrib–temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumor Biol. 34, 1935–1947 (2013). https://doi.org/10.1007/s13277-013-0738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0738-7

Keywords

Navigation