Log in

The Transitional Cardiac Pum** Mechanics in the Embryonic Heart

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2013

Abstract

Several studies have linked abnormal blood flow dynamics to the formation of congenital heart defects during the early stages of development. The objective of this study is to document the transition of pum** mechanics from the early tube stage to the late loo** stage of the embryonic heart. The optically transparent zebrafish embryonic heart was utilized as the in vivo model and was studied using standard bright field microscopy at three relevant stages within the transitional period: (1) tube stage at 30 hours post-fertilization (hpf); (2) early cardiac loo** stage at 36 hpf; and (3) late cardiac loo** stage at 48 hpf. High-speed videos were collected at 1000 fps at a spatial resolution of 1.1 μm/pixel at each of these stages and were post-processed to yield blood velocity patterns as well as wall kinematics. Results show that several relevant trends exist. Morphological trends from tube through late loo** include: (a) ballooning of the chambers, (b) increasing constriction at the atrioventricular junction (AVJ), and (c) repositioning of the ventricle toward the side of the atrium. Blood flow trends include: (a) higher blood velocities, (b) increased AVJ regurgitation, and (c) larger percentages of blood from the upper atrium expelled backward toward the atrial inlet. Pum** mechanics trends include: (a) increasing contraction wave delay at the AVJ, (b) the AVJ begins acting as a rudimentary valve, (c) decreasing chamber constriction during maximum contraction, and (d) a transition in ventricular kinematics from a pronounced propagating wave to an independent, full-chamber contraction. The above results provide new insight into the transitional pum** mechanics from peristalsis-like pum** to a displacement pum** mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Auman, H. J., et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5(3):604–615, 2007.

    Article  Google Scholar 

  2. Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91(2):279–288, 2011.

    Article  Google Scholar 

  3. Bartman, T., et al. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2(5):673–681, 2004.

    Article  Google Scholar 

  4. Beis, D., and D. Y. R. Stainier. In vivo cell biology: following the zebrafish trend. Trends Cell Biol. 16(2):105–112, 2006.

    Article  Google Scholar 

  5. Beis, D., et al. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132(18):4193–4204, 2005.

    Article  Google Scholar 

  6. Bhat, S., J. Ohn, and M. Liebling. Motion-based structure separation for label-free high-speed 3-D cardiac microscopy. IEEE Trans. Image Process. 21(8):3638–3647, 2012.

    Article  MathSciNet  Google Scholar 

  7. Broekhuizen, M. L. A., et al. Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet. Gynecol. 13(6):437–445, 1999.

    Article  Google Scholar 

  8. Butcher, J. T., et al. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ. Res. 100(10):1503–1511, 2007.

    Article  Google Scholar 

  9. Chico, T. J. A., P. W. Ingham, and D. C. Crossman. Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc. Med. 18(4):150–155, 2008.

    Article  Google Scholar 

  10. Dahme, T., H. A. Katus, and W. Rottbauer. Fishing for the genetic basis of cardiovascular disease. Dis. Models Mech. 2(1–2):18–22, 2009.

    Article  Google Scholar 

  11. Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the loo** heart. Anat Rec. Adv. Integr. Anat. Evol. Biol. 290(9):1057–1068, 2007.

    Article  Google Scholar 

  12. Forouhar, A. S., et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774):751–753, 2006.

    Article  Google Scholar 

  13. Harvey, R. P. Patterning the vertebrate heart. Nat. Rev. Genet. 3(7):544–556, 2002.

    Article  Google Scholar 

  14. Hogers, B., et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ. Res. 80(4):473–481, 1997.

    Article  Google Scholar 

  15. Hogers, B., et al. Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc. Res. 41(1):87–99, 1999.

    Article  Google Scholar 

  16. Hove, J. R., et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177, 2003.

    Article  Google Scholar 

  17. Jamison, R. A., A. Fouras, and R. J. Bryson-Richardson. Cardiac-phase filtering in intracardiac particle image velocimetry. J. Biomed. Opt. 17(3):7, 2012.

    Article  Google Scholar 

  18. Johnson, B., D. Garrity, and L. P. Dasi. Quantifying cardiac function in the embryonic heart. J. Biomech. Eng. Trans. ASME, 2013, accepted for publication.

  19. Kimmel, C. B., et al. Stages of embryonic-development of the zebrafish. Dev. Dyn. 203(3):253–310, 1995.

    Article  MathSciNet  Google Scholar 

  20. Kopp, R., B. Pelster, and T. Schwerte. How does blood cell concentration modulate cardiovascular parameters in develo** zebrafish (Danio rerio)? Comp. Biochem. Physiol. Mol. Integr. Physiol. 146(3):400–407, 2007.

    Article  Google Scholar 

  21. Liebling, M., et al. Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development. Dev. Dyn. 235(11):2940–2948, 2006.

    Article  Google Scholar 

  22. Lieschke, G. J., and P. D. Currie. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8(5):353–367, 2007.

    Article  Google Scholar 

  23. Liu, A.P., et al. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 7(7), 2012.

  24. Loumes, L., I. Avrahami, and M. Gharib. Resonant pum** in a multilayer impedance pump. Phys. Fluids 20(2):11, 2008.

    Article  Google Scholar 

  25. Manner, J., A. Wessel, and T. M. Yelbuz. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev. Dyn. 239(4):1035–1046, 2010.

    Article  Google Scholar 

  26. Roman, B. L., et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019, 2002.

    MathSciNet  Google Scholar 

  27. Scherz, P. J., et al. High-speed imaging of develo** heart valves reveals interplay of morphogenesis and function. Development 135(6):1179–1187, 2008.

    Article  Google Scholar 

  28. Stainier, D. Y. R., and M. C. Fishman. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc. Med. 4(5):207–212, 1994.

    Article  Google Scholar 

  29. Stainier, D. Y. R., R. K. Lee, and M. C. Fishman. Cardiovascular development in the zebrafish. 1. Myocardial fate map and heart tube formation. Development 119(1):31–40, 1993.

    Google Scholar 

  30. Thisse, C., and L. I. Zon. Development—organogenesis—heart and wood formation from the zebrafish point of view. Science 295(5554):457–462, 2002.

    Article  Google Scholar 

  31. Westerfield, M. The Zebrafish Book. Eugene, OR: University of Oregon Press, 1995.

Download references

Acknowledgments

We acknowledge funding from the National Science Foundation (Award# 1235305), program director Dr. Dennis Carter. We also thank Dr. Lindsay Parrie and Dr. Yelena Chernyavskaya for sharing their expertise regarding zebrafish preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Kerem Pekkan and Bradley B. Keller oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, B.M., Garrity, D.M. & Dasi, L.P. The Transitional Cardiac Pum** Mechanics in the Embryonic Heart. Cardiovasc Eng Tech 4, 246–255 (2013). https://doi.org/10.1007/s13239-013-0120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0120-3

Keywords

Navigation