Log in

Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We investigated the thermoelectric properties of reduced graphene oxide (rGO) as a function of the oxidation level of rGO. rGO among graphene derivatives was selected as a thermoelectric material since rGO bucky paper shows low thermal conductivity due to the phonon scattering at the junctions of rGO nanoplatelets. The oxdation level of rGO was controlled by differing the amount of chemical reductant (hydrazine) used to reduce graphene oxide (GO) to rGO, which correspondingly affected the electrical conductivity and Seebeck coefficient of rGO film. In this study, the maximum of figure of merit (ZT) was found to reach to 1.1×10−4 at 298 K for rGO reduced with the hydrazine of 1000 μL. These results provide the first experimental evidence that the thermoelectric performance of graphene and its derivative can be controlled by the oxidation level of graphitic nanoplatelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. Int. Ed. Engl., 48, 8616 (2009).

    Article  CAS  Google Scholar 

  2. A. Majumdar, Science, 303, 777 (2004).

    Article  CAS  Google Scholar 

  3. S. K. Bux, J. P. Fleurial, and R. B. Kaner, Chem. Commun., 46, 8311 (2010).

    Article  CAS  Google Scholar 

  4. E. J. Winder, A. B. Ellis, and G. C. Lisensky, J. Chem. Educ., 73, 940 (1996).

    Article  CAS  Google Scholar 

  5. Y. Ouyang and J. Guo, Appl. Phys. Lett., 94, 263107 (2009).

    Article  Google Scholar 

  6. L. Hao and T. K. Lee, Phys. Rev. B, 81, 165445 (2010).

    Article  Google Scholar 

  7. N. **ao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.-J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan, and Q. Yan, ACS Nano, 5, 2749 (2011).

    Article  CAS  Google Scholar 

  8. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science, 328, 213 (2010).

    Article  CAS  Google Scholar 

  9. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., 11, 771 (1999).

    Article  CAS  Google Scholar 

  10. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  11. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventride Jr., and R. S. Ruoff, Carbon, 47, 145 (2009).

    Article  CAS  Google Scholar 

  12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  13. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, Nat. Chem., 2, 581 (2010).

    Article  CAS  Google Scholar 

  14. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008).

    Article  CAS  Google Scholar 

  15. N. Dubey and M. Leclerc, Polym. Phys., 49, 467 (2009).

    Article  Google Scholar 

  16. Y. W. Park, Y. S. Lee, C. Park, L. W. Shacklette, and R. H. Baughman, Solid State Commun., 63, 1063 (1987).

    Article  CAS  Google Scholar 

  17. Y. Shinohara, K. Ohara, H. Nakanishi, Y. Imai, and Y. Isoda, Mater. Sci. Forum, 492–493, 141 (2005).

    Article  Google Scholar 

  18. J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synth. Met., 160, 1153 (2010).

    Article  CAS  Google Scholar 

  19. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met., 157, 467 (2007).

    Article  CAS  Google Scholar 

  20. E. Hu, A. Kaynak, and Y. Li, Synth. Met., 150, 139 (2005).

    Article  CAS  Google Scholar 

  21. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Nano Lett., 8, 902 (2008).

    Article  CAS  Google Scholar 

  22. R. Chasmar and R. Stratton, J. Electron. Control, 7, 52 (1959).

    Article  CAS  Google Scholar 

  23. G. D. Mahan, J. Appl. Phys., 65, 1578 (1989).

    Article  Google Scholar 

  24. J. O. Sofo and G. D. Mahan, Phys. Rev. B, 49, 4565 (1994).

    Article  CAS  Google Scholar 

  25. Y. Shen, P. Zhou, Q. Q. Sun, L. Wan, J. Li, L. Y. Chen, D. W. Zhang, and X. B. Wang, Appl. Phys. Lett., 99, 141911 (2011).

    Article  Google Scholar 

  26. A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela, M. Reddy, and P. M. Ajayan, J. Phys. Chem. Lett., 3, 986 (2012).

    Article  CAS  Google Scholar 

  27. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng, Adv. Funct. Mater., 20, 2255 (2010).

    Article  CAS  Google Scholar 

  28. J. Ito, J. Nakamura, and A. Natori, J. Appl. Phys., 103, 113712 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heesuk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Tu, N.D.K., Lee, SS. et al. Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties. Macromol. Res. 22, 1104–1108 (2014). https://doi.org/10.1007/s13233-014-2160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2160-4

Keywords

Navigation