Log in

Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Alumina (Al2O3) nanoparticles with three different interface structures have been selected as reinforcement fillers for epoxy nanocomposite, that is surface untreated Al2O3 nanoparticles, γ-aminopropyl-triethoxysilane modified Al2O3 nanoparticles (Al2O3-APS), and hyperbranched aromatic polyamide grafted Al2O3 nanoparticles (Al2O3-HBP). The interface structures of the Al2O3 nanoparticles were characterized by X-ray diffraction and atomic force micrographs. Our studies reported the influence of the interface structure of Al2O3 nanoparticles on the morphology and dielectric properties of epoxy nanocomposites. It was found that the incorporation of the Al2O3-APS and Al2O3-HBP nanoparticles not only improved the dispersion of the nanoparticles in the epoxy matrix, but also enhanced the glass transition temperatures (T gs) and largely influenced the dielectric properties of the epoxy nanocomposites as compared with the nanocomposites filled with the surface untreated Al2O3 nanoparticles. The improvement of T gs, volume resistivity, dielectric strength, and the reduction of dielectric loss could be attributed to the good dispersion and special interface structure of the Al2O3 nanoparticles in the epoxy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zaman, Q. H. Le, H. C. Kuan, N. Kawashima, L. Luong, A. Gerson, and J. Ma, Polymer, 52, 497 (2011).

    Article  CAS  Google Scholar 

  2. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, Polymer, 47, 7970 (2006).

    Article  CAS  Google Scholar 

  3. S. C. Liufu, H. N. **ao, and Y. P. Li, Polym. Degrad. Stab., 87, 103 (2005).

    Article  CAS  Google Scholar 

  4. B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schadler, R. W. Siegel, B. C. Benicewicz, and T. Apple, Polym. Compos., 23, 1014 (2002).

    Article  CAS  Google Scholar 

  5. D. L. Ma, T. A. Hugener, R. W. Siegel, A. Christerson, E. Martensson, C. Onneby, and L. S. Schadler, Nanotechnology, 16, 724 (2005).

    Article  CAS  Google Scholar 

  6. B. J. Ash, R. W. Siegel, and L. S. Schadler, J. Polym. Sci. Part B: Polym. Phys., 42, 4371 (2004).

    Article  CAS  Google Scholar 

  7. J. Lee, Y. Ko, and J. Kim, Macromol. Res., 18, 200 (2010).

    Article  CAS  Google Scholar 

  8. G. C. Montanari, D. Fabiani, F. Palmieri, D. Kaempfer, R. Thomann, and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 754 (2004).

    Article  CAS  Google Scholar 

  9. X. Y. Huang, P. K. Jiang, and Y. Yin, Appl. Phys. Lett., 95, 242905 (2009).

    Article  Google Scholar 

  10. M. R. **e and Z. G. Wang, Macromol. Rapid Commun., 22, 620 (2001).

    Article  CAS  Google Scholar 

  11. M. R. **e, Z. G. Wang, and Y. F. Zhao, Acta Polym. Sin., 4, 517 (2001).

    Google Scholar 

  12. J. C. Cho, H. Y. Lee, S. T. Lim, M. S. Park, Y. S. Oh, M. S. Cho, and Y. K. Lee, Macromol. Res., 18, 47 (2010).

    Article  CAS  Google Scholar 

  13. X. Y. Huang, Y. Zheng, P. K. Jiang, and Y. Yin, IEEE Trans. Dielectr. Electr. Insul., 17, 635 (2010).

    Article  CAS  Google Scholar 

  14. M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei, and N. Hayakawa, IEEE Trans. Dielectr. Electr. Insul., 17, 662 (2010).

    Article  CAS  Google Scholar 

  15. M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei, and N. Hayakawa, IEEE Trans. Dielectr. Electr. Insul., 17, 1268 (2010).

    Article  CAS  Google Scholar 

  16. P. Maity, N. Gupta, V. Parameswaran, and S. Basu, IEEE Trans. Dielectr. Electr. Insul., 17, 1665 (2010).

    Article  CAS  Google Scholar 

  17. R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng. A, 445–446, 567 (2007).

    Google Scholar 

  18. M. M. Ueki and M. Zanin, IEEE Trans. Dielectr. Electr. Insul., 6, 876 (1999).

    Article  CAS  Google Scholar 

  19. M. Roy, J. K. Nelson, R. K. MacCrone, L. S. Schadler, C. W. Reed, and R. Keefe, IEEE Trans. Dielectr. Electr. Insul., 12, 629 (2005).

    Article  CAS  Google Scholar 

  20. V. Gonzalez-Pena, I. Diaz, C. Marquez-Alvarez, E. Sastre, and J. Perez-Pariente, Microporous Mesoporous Mater., 44, 203 (2001).

    Article  Google Scholar 

  21. B. Lippens and J. De Boer, Acta Crystallogr., 17, 1312 (1964).

    Article  CAS  Google Scholar 

  22. G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K. Winter, A. J. Studer, B. A. Hunter, and J. V. Hanna, Chem. Mater., 16, 220 (2003).

    Article  Google Scholar 

  23. J. Yu, X. Huang, L. Wang, P. Peng, C. Wu, X. Wu, and P. Jiang, Polym. Chem., 2, 1380 (2011).

    Article  CAS  Google Scholar 

  24. X. Zeng, N. Kosizaki, and T. Sasaki, Appl. Phys. A, 69, S253 (1999).

    Article  CAS  Google Scholar 

  25. H. Zhang, L.-C. Tang, Z. Zhang, K. Friedrich, and S. Sprenger, Polymer, 49, 3816 (2008).

    Article  CAS  Google Scholar 

  26. O. Becker, R. Varley, and G. Simon, Polymer, 43, 4365 (2002).

    Article  CAS  Google Scholar 

  27. Y. L. Liu, C. Y. Hsu, W. L. Wei, and R. J. Jeng, Polymer, 44, 5159 (2003).

    Article  CAS  Google Scholar 

  28. G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, and L. Mascia, Polymer, 46, 10506 (2005).

    Article  CAS  Google Scholar 

  29. M. Preghenella, A. Pegoretti, and C. Migliaresi, Polymer, 46, 12065 (2005).

    Article  CAS  Google Scholar 

  30. Y. Sun, Z. Zhang, K. S. Moon, and C. Wong, J. Polym. Sci. Part B: Polym. Phys., 42, 3849 (2004).

    Article  CAS  Google Scholar 

  31. B. J. Ash, R. W. Siegel, and L. S. Schadler, Macromolecules, 37, 1358 (2004).

    Article  CAS  Google Scholar 

  32. A. M. Mayes, Nat. Mater., 4, 651 (2005).

    Article  CAS  Google Scholar 

  33. M. Valant and D. Suvorov, Mater. Chem. Phys., 79, 104 (2003).

    Article  CAS  Google Scholar 

  34. J. Lu, K. S. Moon, and C. P. Wong, J. Mater. Chem., 18, 4821 (2008).

    Article  CAS  Google Scholar 

  35. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 16, 531 (2009).

    Article  CAS  Google Scholar 

  36. W. Peng, X. Huang, J. Yu, P. Jiang, and W. Liu, Compos. Part A, 41, 1201 (2010).

    Article  Google Scholar 

  37. T. P. Schuman, S. Siddabattuni, O. Cox, and F. Dogan, Compos. Interfaces, 17, 719 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genglin Wang or **kai Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Huo, R., Wu, C. et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 20, 816–826 (2012). https://doi.org/10.1007/s13233-012-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0122-2

Keywords

Navigation