Log in

Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ microbial enhanced oil recovery

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study describes the ex-situ production of a biosurfactant by Pseudomonas sp. TMB2 for its potential application in enhancing oil recovery. The physicochemical parameters such as temperature and pH were optimized as 30 °C and 7.2, respectively, for their maximum laboratory scale production in mineral salt medium containing glucose and sodium nitrate as best carbon and nitrogen sources. The surface activity of the resulting culture broth was declined from 71.9 to 33.4 mN/m having the highest emulsification activity against kerosene oil. The extracted biosurfactant was characterized chemically as glycolipid by Fourier-transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy analyses. The presence of mono-rhamnolipids (Rha-C8:2, Rha-C10, Rha-C10-C10, and Rha-C10-C12:1) and di-rhamnolipids (Rha-Rha-C12-C10, Rha-Rha-C10-C10, and Rha-Rha-C10-C12:1) congeners were determined by liquid chromatography-mass spectroscopy analysis. The thermostability and degradation pattern of the candidate biosurfactant were tested by thermogravimetry assay and differential scanning calorimetry studies for its suitability in ex-situ oil recovery technology. The rhamnolipid based slug, prepared in 4000 ppm brine solution reduced the interfacial tension between liquid paraffin oil and aqueous solution to 0.8 mN/m from 39.1 mN/m at critical micelle concentration of 120 mg/L. The flooding test was performed using conventional core plugs belonging to oil producing horizons of Upper Assam Basin and recovered 16.7% of original oil in place after secondary brine flooding with microscopic displacement efficiency of 27.11%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219

    CAS  PubMed  Google Scholar 

  • Al-Sulaimani H, Joshi S, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A (2011) Microbial biotechnology for enhancing oil recovery: current developments and future prospects. Biotechnol Bioinf Bioeng 1(2):147–158

    Google Scholar 

  • Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex-situ enhanced oil recovery. Biotechnol Appl Biochem 170(5):1080–1093

    CAS  Google Scholar 

  • Anderson WG (1986) Wettability literature survey-part 2: wettability measurement. J Petrol Technol 38(11):1246–1262

    CAS  Google Scholar 

  • Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces 95:23–29

    CAS  PubMed  Google Scholar 

  • Arutchelvi J, Doble M (2010) Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum contaminated soil. Lett Appl Microbiol 51:75–82

    CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    CAS  PubMed  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    CAS  PubMed  Google Scholar 

  • Bharali P, Das S, Konwar BK, Thakur AJ (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. Int Biodeterior Biodegrad 65(5):682–690

    CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    CAS  PubMed  Google Scholar 

  • Caiazza NC, Shanks RM, O'Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Câmara JM, Sousa MA, Barros Neto EL (2019) Optimization and characterization of biosurfactant rhamnolipid production by Pseudomonas aeruginosa isolated from an artificially contaminated soil. J Surfactants Deterg. https://doi.org/10.1002/jsde.12287

    Article  Google Scholar 

  • Chen J, Wang XJ, Hu JD, Tao S (2006) Effect of surfactants on biodegradation of PAHs by white-rot fungi. Huan**gkexue 27(1):154–159

    CAS  Google Scholar 

  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23(3):661–666

    CAS  PubMed  Google Scholar 

  • Chen C, Sun N, Li D, Long S (2018) Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environ Sci Pollut R 25:14934–14943

    CAS  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170(3):676–689

    CAS  PubMed  Google Scholar 

  • Crabtree RH (2004) Organometallic alkane CH activation. J Organomet Chem 689(24):4083–4091

    CAS  Google Scholar 

  • Darvishi P, Ayatollahi S, Roostaei AR (2015) Microbial enhanced oil recovery, wettability alteration and interfacial tension reduction by an efficient bacterial consortium, ERCPPI-2. J Oil Gas Petrochem Technol 2:27–42

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216

    CAS  Google Scholar 

  • El-Sheshtawy HS, Doheim MM (2014) Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egypt J Petrol 23(1):1–6

    Google Scholar 

  • Eskandari S, Rashedi H, Ziaie-Shirkolaee Y, Mazaheri-Assadi M, Jamshidi E, Bonakdarpour B (2009) Evaluation of oil recovery by rhamnolipid produced with isolated strain from Iranian oil wells. Ann Microbiol 59(3):573

    CAS  Google Scholar 

  • Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB (2010) Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B Biointerfaces 79(2):334–339

    CAS  PubMed  Google Scholar 

  • Gogoi SB (2014) Effluent as surfactant for enhanced oil recovery. Innov Energy Policies 3:46–54

    Google Scholar 

  • Gogoi SB, Das BM (2012) Use of an effluent for enhance oil recovery. Indian J Chem 19:366–370

    CAS  Google Scholar 

  • Gogoi D, Bhagowati P, Gogoi P, Bordoloi NK, Rafay A, Dolui SK, Mukherjee AK (2016) Structural and physico-chemical characterization of a di-rhamnolipid biosurfactant purified from Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 6(74):70669–70681

    CAS  Google Scholar 

  • Govindammal M (2014) Effect of carbon and nitrogen sources on the production of biosurfactant by Pseudomonas fluorescens isolated from mangrove ecosystem. Int J Pharm Biol Sci Arch 5:2

    Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81(3):316–322

    CAS  PubMed  Google Scholar 

  • Haloi S, Medhi T (2019) Optimization and characterization of a glycolipid produced by Achromobacter sp. to use in petroleum industries. J Basic Microbiol 59(3):238–248

    CAS  PubMed  Google Scholar 

  • Jiang H, Dong H, Zhang G, Yu B (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in north western Chinan. Appl Environ Microbiol 72:3832–3845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EF, Bossler DP, Naumann VO (1959) Calculation of relative permeability from displacement experiments. Petrol Trans 216:370–372

    Google Scholar 

  • Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MS (2016) Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol 7:1853

    PubMed  PubMed Central  Google Scholar 

  • Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabi KA, Manteghian M (2019) Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Adv 9(14):7932–7947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler T, Curty LK, Barja F, Van Delden C, Péchère JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell to cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    PubMed  PubMed Central  Google Scholar 

  • Kumar AP, Janardhan A, Radha S, Viswanath B, Narasimha G (2015) Statistical approach to optimize production of biosurfactant by Pseudomonas aeruginosa 2297. 3 Biotech 5(1):71–79

    PubMed  Google Scholar 

  • Liu S (2008) Alkaline surfactant polymer enhanced oil recovery process. Ph.D. thesis. Rice University, Houston

  • Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas Aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B Biointerfaces 81(2):397–405

    CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (1999) Structural characterization of biosurfactant produced by Bacillus subtilis at 45 C. J Surfactants Deterg 2(3):367–372

    CAS  Google Scholar 

  • Mandal AB, Nair BU, Ramaswamy D (1988) Determination of the critical micelle concentration of surfactants and the partition coefficient of an electrochemical probe by using cyclic voltammetry. Langmuir 4(3):736–739

    CAS  Google Scholar 

  • Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araújo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13

    CAS  PubMed  Google Scholar 

  • Nelson, RC, Lawson JB, Thigpen DR, Stegemeier GL (1984) Cosurfactant-enhanced alkaline flooding. In: SPE enhanced oil recovery symposium. Society of Petroleum Engineers.

  • Neu TR (1996) Significance of bacterial surface–active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurfarahin AH, Mohamed MS, Phang LY (2018) Culture medium development for microbial-derived surfactants production—an overview. Molecules 23(5):1049

    PubMed Central  Google Scholar 

  • Nwidee LN, Lebedev M, Barifcani A, Sarmadivaleh M, Iglauer S (2017) Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation. J Colloid Interface Sci 504:334–345

    CAS  PubMed  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol 25(9):1615–1623

    CAS  Google Scholar 

  • Olajire AA (2014) Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: prospects and challenges. Energy 77:963–982

    CAS  Google Scholar 

  • Onwosi CO, Odibo FJC (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28(3):937–942

    CAS  PubMed  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    PubMed  PubMed Central  Google Scholar 

  • Pereira JF, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JA, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    CAS  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72(1):132

    CAS  PubMed  Google Scholar 

  • Phukan R, Gogoi SB, Tiwari P (2019) Enhanced oil recovery by alkaline-surfactant-alternated-gas/CO2 flooding. J Pet Explor Prod Technol 9(1):247–260

    CAS  Google Scholar 

  • Prieto LM, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2008) The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71(9):1781–1785

    CAS  PubMed  Google Scholar 

  • Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S (2017) Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. J Basic Microbiol 57(1):21–33

    CAS  PubMed  Google Scholar 

  • Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97(13):5979–5991

    CAS  PubMed  Google Scholar 

  • Rao BKB (2002) Modern petroleum refining processes, 4th edn. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 58–59

    Google Scholar 

  • Rashedi H, Izadi A, Bidhendi ME (2015) Optimization of operational parameters in rhamnolipid production by Pseudomonas aeruginosa MM1011 in a miniaturized shaken bioreactor. J Appl Biotechnol Rep 2(3):271–278

    CAS  Google Scholar 

  • Saikia RR, Deka S, Deka M, Banat IM (2012) Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann Microbiol 62(2):753–763

    CAS  Google Scholar 

  • Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis. Iran J Biotechnol 7(4):216–223

    CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401

    PubMed  PubMed Central  Google Scholar 

  • Satter A, Iqbal G, Buchwalter J (2008) Practical enhanced reservoir engineering: assisted with simulation software. Practical enhanced reservoir engineering. PennWell, Oklahoma

    Google Scholar 

  • Sharma D, Ansari MJ, Al-Ghamdi A, Adgaba N, Khan KA, Pruthi V, Al-Waili N (2015) Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil andit’s physicochemical characterization. Environ Sci Pollut Res 22(22):17636–17643

    CAS  Google Scholar 

  • Sharma R, Singh J, Verma N (2018) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech 8(1):20

    PubMed  Google Scholar 

  • Singh P, Tiwary BN (2016) Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines. India Bioresour Bioprocess 3(1):42

    Google Scholar 

  • Tavares LF, Silva PM, Junqueira M, Mariano DC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921

    CAS  PubMed  Google Scholar 

  • Thomas S (2008) Enhanced oil recovery-an overview. Oil Gas Sci Technol Revue de l'IFP 63(1):9–19

    CAS  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants. Adv Exp Med Biol, vol 672, pp 1–13

  • Wei QF, Mather RR, Fotheringham AF (2005) Oil removal from used sorbents using a biosurfactant. Bioresour Technol 96(3):331–334

    CAS  PubMed  Google Scholar 

  • Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415–422

    CAS  PubMed  Google Scholar 

  • Yin H, Qiang J, Jia Y, Ye J (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil containing wastewater. Process Biochem 44:302–308

    CAS  Google Scholar 

  • Zhao F, Zhang J, Shi R, Han S, Ma F, Zhang Y (2015) Production of biosurfactant by a Pseudomonas aeruginosa isolate and its applicability to in situ microbial enhanced oil recovery under anoxic conditions. RSC Adv 5(45):36044–36050

    CAS  Google Scholar 

  • Zhao F, Zhou JD, Ma F, Shi RJ, Han SQ, Zhang J, Zhang Y (2016) Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: applications for microbial enhanced oil recovery. Bioresour Technol 207:24–30

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged the financial assistance extended in the form of a project Junior Research Fellowship (entitled “Strengthening of Biotechnology Teaching, Training and Research in Universities and Colleges in the North-East”) by the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India to Saurav Haloi. The authors are also grateful to Institute Of Biotechnology & Geotectonics Studies (INBIGS)-Oil and Natural Gas Corporation (ONGC), Assam & Assam-Arakan Basin Eastern Region, Cinnamara, Jorhat, Assam, India for providing us crude oil from Borhola oil field, Jorhat, Assam and ONGC-Centre for Petroleum Biotechnology, Department of Molecular Biology and Biotechnology, Tezpur University for providing us laboratory facilities. The authors are also grateful to SAIC, IIT Mumbai (for HR-LCMS), Department of Chemical Sciences (for NMR and TGA–DSC) and Material Research Laboratory, Department of Physics, Tezpur University (for Contact angle measurement) for their support. We also like to thank Mr. Rituraj Das, RS of the Department of Chemical Sciences, Tezpur University for the help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata B. Gogoi or Tapas Medhi.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haloi, S., Sarmah, S., Gogoi, S.B. et al. Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ microbial enhanced oil recovery. 3 Biotech 10, 120 (2020). https://doi.org/10.1007/s13205-020-2094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2094-9

Keywords

Navigation