Log in

Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv

  • Short Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Quercetin and rutin, two flavonoids were examined for antimycobacterial activities against M. tuberculosis H37Rv (ATCC 27294). The quercetin exhibited (99.30 ± 0.268%) in (LRP) assay at 200 µg/ml and 56.21 ± 0.97% inhibition in (BMD) at 50 µg/ml, whereas rutin exhibited (90.40 ± 0.68%) in LRP assay at 200 µg/ml and 56.10 ± 0.67% inhibition in BMD at 50 µg/ml. The minimum inhibitory concentration (MIC) was found to be 6.25 µg ml−1 and 25 µg ml−1 respectively. The current investigation suggests that quercetin has better inhibitory activity than rutin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

References

  • Anon (2003) Ayurvedic Formulary of India. Part I. Department of ISM & H, Ministry of Health and Family Welfare, Govt. of India

  • Araujo RC, Neves FA, Formagio AS, Kassuya CA, Stefanello ME, Souza VV, Pavan FR, Croda J (2014) Evaluation of the anti-mycobacterium tuberculosis activity and in vivo acute toxicity of Annona sylvatic. BMC Complement Altern Med 14:209

    Article  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  Google Scholar 

  • Bhave DP, III WBM, Carroll KS (2007) Drug targets in mycobacterial sulfur metabolism. Infect Disord Drug Targets 7:140–158

    Article  CAS  Google Scholar 

  • Brown AK, Papaemmanouil A, Bhowruth V, Bhatt A, Dover LG, Besra GS (2007) Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology 153:3314–3322

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochem Biophys Acta 1830:3670–95

    Article  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  • Dubey S, Ganeshpurkar A, Bansal D, Dubey N (2013) Experimental studies on bioactive potential of rutin. Chron Young Sci 4(2):153–157

    Article  Google Scholar 

  • Dusthackeer A, Kumar V, Subbianb S, Sivaramakrishnan G, Zhu G, Subramanyam B, Hassan S, Nagamaiah S, Chan J, Rama NP (2008) Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tuberculi bacilli. J Microbiol Methods 73:18–25

    Article  CAS  Google Scholar 

  • Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25(2):149–164

    Article  Google Scholar 

  • Gising J, Nilsson MT, OdellL R, Yahiaoui S, Lindh M, Iyer H, Sinha AM, Srinivasa BR, Larhed M, Mowbray SL, Karlen A (2012) Trisubstitutedimidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors. J Med Chem 22:2894–2898

    Article  Google Scholar 

  • Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 8:e62839

    Article  CAS  Google Scholar 

  • Guzman JD, Gupta A, Evangelopoulos D, Basavannacharya C, Pabon LC, Plazas EA, Munoz DR, Delgado WA, Cuca LE, Ribon W, Gibbons S, Bhakta S (2010) Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J Antimicrob Chemother 65:2101–2107

    Article  CAS  Google Scholar 

  • Hirayama Y, Yoshimura M, Ozeki Y, Sugawara I, Udagawa T, Mizuno S, Itano N, Kimata K, Tamaru A, Ogura H, Kobayashi K, Matsumoto S (2009) Mycobacteria exploit host hyaluronan for efficient extracellular replication. PLoS Pathog 5(10):e1000643

    Article  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967

    Article  CAS  Google Scholar 

  • Jacob SJP, Jothivanan E, Vamsi BYV (2014) Molecular docking analysis of bioflavonoids against Mycobacterium tuberculosis drug target beta-ketoacyl-acp synthase III. Intern J Pharm Res Dev 6:48–52

    Google Scholar 

  • Jesus RS, Piana M, Freitas RB, Brum TF, Alves CFS, Belka BV, Mossmann NJ, Cruz CC, Santos RCV, Dalmolin TV, Bianchini BV, Campos MA, Bauermann LF (2018) Invitro antimicrobial and antimycobacterial activity and HPLC–DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian J Microbiol 49(2):296–302

    Article  Google Scholar 

  • Kirtikar KR, Basu BD (1935) Indian Medicinal Plants, vols 1–4. Lalit Mohan Basu, Allahabad

    Google Scholar 

  • Lienhardt C, Raviglione M, Spigelman M, Hafner R, Jaramillo E, Hoelscher M, Zumla A, Gheuens J (2012) New drugs for the treatment of tuberculosis: needs, challenges, promise and prospects for the future. J Infect Dis 205:S241–S249

    Article  Google Scholar 

  • Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC (2002) Chalcones and flavonoids as anti-tuberculosis agents. Bioorz Med Chem 10:2795–2802

    Article  CAS  Google Scholar 

  • Lounis N, Vranckx L, Gevers T, Kaniga K, Andries K (2016) In vitro culture conditions affecting minimal inhibitory concentration ofbedaquiline against M. tuberculosis. Médecineet Maladies Infectieuses 46:220–225

    Article  CAS  Google Scholar 

  • Murillo JI, Dimayuga RE, Malmstrom J, Christophersen C, Franzblau SG (2003) Antimycobacterial flavones from Haplopappus sonorensis. Fitoterapia 74:226–230

    Article  CAS  Google Scholar 

  • Nair SS, Pharande RR, Bannalikar AS, Mukne AP (2015) In vitro anti-mycobacterial activity of acetone extract of GLYCYRRHIZA GLABRA. J Pharm Pharmacogn Res 3:80–86

    CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  Google Scholar 

  • Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PG (2015) Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol 4:165–183

    Article  Google Scholar 

  • O’Neill TE, Li H, Colquhoun CD, Johnson JA, Webster D, Gray CA (2014) Optimization of the microplate resazurin assay for screening and bioassay-guided fractionation of phytochemical extracts against Mycobacterium tuberculosis. Phytochem Anal 25(5):461–467

    Article  Google Scholar 

  • Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure-activity study. Planta Med 64:2–4

    Article  CAS  Google Scholar 

  • Rampersad SN (2012) Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360

    Article  CAS  Google Scholar 

  • Safwat NA, Kashef MT, Aziz RK, Amer KF, Ramadan MA (2018) Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L., inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis 108:106–113

    Article  CAS  Google Scholar 

  • Sanchez JGB, Kouznetsov VV (2010) Antimycobacterial susceptibility testing methods for natural products research. Braz J Microbiol 41:270–277

    Article  Google Scholar 

  • Schafer MP, Fernback JE, Ernst MK (1999) Detection and characterization of airborne Mycobacterium tuberculosis H37Ra particles, a surrogate for airborne pathogenic, M. tuberculosis. Aerosol Sci Technol 30(2):161–173

    Article  CAS  Google Scholar 

  • Sharma S, Gelman E, Narayan C, Bhattacharjee D, Achar V, Humnabakar V, Balasubramanian V, Ramachandran V, Dhar N, Dinesh N (2014) Simple and rapid method to determine antimycobacterial potency of compounds by using auto-luminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:5801–5808

    Article  Google Scholar 

  • Shukla H, Kumar V, Singh AK, Rastogi S, Khan SR, Siddiqi MI et al. (2015) Isocitratelyase of Mycobacterium tuberculosis is inhibited by quercetin through binding at N-terminus. Intern J Biol Macromol 78:137–41

    Article  Google Scholar 

  • Sivakumar PM, Babu SKG, Mukesh D (2007) QSAR studies on chalcones and flavonoids as anti-tuberculosis agentsusing genetic function approximation (GFA) method. Chem Pharm Bull 55(1):44–49

    Article  CAS  Google Scholar 

  • Suriyanarayanan B, Shanmugam K, Santhosh RS (2013) Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase. Rom Biotechnol Lett 18:1587–1593

    Google Scholar 

  • Tekwu EM, Askun T, Kuete V, Nkengfack AE, Nyasse B, Etoa FX, Beng VP (2012) Antibacterial activity of selected Cameroonian dietary spices ethno-medically used against strains of Mycobacterium tuberculosis. J Ethnopharmacol 142:374–382

    Article  Google Scholar 

  • Villaume SA, Fu J, Go IN, Liang H, Lou H, Kremer L, Pan W, Vincent SP (2017) Natural and synthetic flavonoids as potent Mycobacterium tuberculosis UGM inhibitors. Chem Eur J 23:10423–10429

    Article  CAS  Google Scholar 

  • Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery system of quercetin: a review. Trends Food Sci Technol 56:21–38

    Article  CAS  Google Scholar 

  • World Health Organization, WHO Global Tuberculosis Report (2014) http://www.who.int/tdr/news/2014/global-TB-report/en/

  • Yadav AK, Thakur J, Prakash O, Khan F, Saikia D, Gupta MM (2013) Screening of flavonoids for antitubercular activity and their structure–activity relationships. Med Chem Res 22:2706–2716

    Article  CAS  Google Scholar 

  • Yang K, Lamprechet SA, Liu Y, Shinozaki H, Fan K, Leung D, Newmark H, Steele VE, Kelloff GJ, Liipkin M (2000) Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon. Carcinogenesis 21:1655–1660

    Article  CAS  Google Scholar 

  • Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, Sun X, Lu Z, Zhang H (2014) Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med 14:400

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Uma Devi, HOD, Department of Bacteriology, National Institute for Research in Tuberculosis (ICMR), Chennai, India for performing antituberculosis assays. Authors are also thankful to the management of VIT University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Ranjan Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, K., Ghosh, A.R. & Dusthackeer, A. Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech 8, 427 (2018). https://doi.org/10.1007/s13205-018-1450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1450-5

Keywords

Navigation