Log in

Partial hydrogenation of oils using cold plasma technology and its effect on lipid oxidation

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The formation of trans-fatty acids during the hydrogenation of oils using traditional methods is a known fact. Hydrogenation involves the conversion of unsaturation to saturation to enhance the kee** quality of oils. These trans-fatty acids are considered harmful leading to several cardiovascular diseases. Methods like the use of novel catalysts, interesterification, supercritical CO2 hydrogenation and electrocatalytic hydrogenation have been employed to reduce the trans-fatty acid formation. Recently, the application of cold plasma for hydrogenation was employed as an eco-friendly technology. The use of hydrogen as a feed gas will be the source of atomic hydrogen required for the conversion of unsaturated to saturated bonds. The hydrogenation using cold plasma did not result in the formation of trans-fatty acids. However, some reports have shown insignificant levels of trans-fatty acids and secondary lipid oxidation compounds after the plasma treatment. Therefore, it is necessary to optimize the plasma parameters, feed gas type and composition, processing condition to avoid practical implications. It can be concluded that after the detailed investigation of role of reactive species in the partial hydrogenation of oils cold plasma can be considered as an alternative technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam M, Mossoba MM, Lee T (2000) Rapid determination of total trans-fat content by attenuated total reflection infrared spectroscopy: an international collaborative study. J Am Oil Chem Soc 77:457–462

    Article  CAS  Google Scholar 

  • Albertos I, Martín-Diana A, Cullen PJ, Tiwari BK, Ojha SK, Bourke P, Rico D (2017) Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov Food Sci Emerg Technol 44:117–122

    Article  CAS  Google Scholar 

  • AOCS Official Method Cd 14d-99. Rapid Determination of Isolated trans Geometric Isomers in Fats and Oils by Attenuated Total Reflection Infrared Spectroscopy

  • Beers AEB (2007) Low trans hydrogenation of edible oils. Lipid Technol 19(3):56–58

    Article  CAS  Google Scholar 

  • Coenen JW (1976) Hydrogenation of edible oils. J Am Oil Chem Soc 53(6):382–389

    Article  CAS  Google Scholar 

  • Coutinho NM, Silveira MR, Rocha RS, Freitas MQ, Duarte MCK, Quero RF, da Cruz AG (2021) Cold plasma. Sustainable food processing and engineering challenges. Academic Press, pp 109–135

    Chapter  Google Scholar 

  • Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US (2017) Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–191

    Article  CAS  Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press

    Book  Google Scholar 

  • Gavahian M, Chu YH, Khaneghah AM, Barba FJ, Misra NN (2018) A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci Technol 77:32–41

    Article  CAS  Google Scholar 

  • Hao H, Wu BS, Yang J, Guo Q, Yang Y, Li YW (2015) Non-thermal plasma enhanced heavy oil upgrading. Fuel 149:162–173

    Article  CAS  Google Scholar 

  • Jang ES, Jung MY, Min DB (2005) Hydrogenation for low trans and high conjugated fatty acids. Compr Rev Food Sci Food Saf 4(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57

    Article  CAS  PubMed  Google Scholar 

  • Johnson DR, Decker EA (2015) The role of oxygen in lipid oxidation reactions: a review. Annu Rev Food Sci Technol 6:171–190

    Article  CAS  PubMed  Google Scholar 

  • Jung MY, Min D (2005) Novel hydrogenation for low trans fatty acids in vegetable oils. In: Lai O-M, Akoh C (eds) Healthful lipids. AOCS Publishing

    Google Scholar 

  • Kim JS, Lee EJ, Choi EH, Kim YJ (2014) Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innov Food Sci Emerg Technol 22:124–130

    Article  Google Scholar 

  • King JW (2014) Modern supercritical fluid technology for food applications. Annu Rev Food Sci Technol 5:215–238

    Article  CAS  PubMed  Google Scholar 

  • Kongprawes G, Wongsawaeng D, Hosemann P, Ngaosuwan K, Kiatkittipong W, Assabumrungrat S (2021) Improvement of oxidation stability of fatty acid methyl esters derived from soybean oil via partial hydrogenation using dielectric barrier discharge plasma. Int J Energy Res 45(3):4519–4533

    Article  CAS  Google Scholar 

  • Lalvani SB, Mondal K (2004) U.S. Patent No. 6,825,367. Washington, DC: U.S. Patent and Trademark Office

  • Laverdura UP, Rossi L, Ferella F, Courson C, Zarli A, Alhajyoussef R, Gallucci K (2020) Selective catalytic hydrogenation of vegetable oils on lindlar catalyst. ACS Omega 5(36):22901–22913. https://doi.org/10.1021/acsomega.0c02280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Yong HI, Kim HJ, Choe W, Yoo SJ, Jang EJ, Jo C (2016a) Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci Biotechnol 25(4):1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Kim HJ, Woo KS, Jo C, Kim JK, Kim SH, Kim WH (2016b) Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. Lwt 73:442–447

    Article  CAS  Google Scholar 

  • Lu P, Cullen PJ, Ostrikov K (2016) Atmospheric pressure nonthermal plasma sources. Cold plasma in food and agriculture. Elsevier, pp 83–116

    Chapter  Google Scholar 

  • Mandal R, Singh A, Singh AP (2018) Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 80:93–103

    Article  CAS  Google Scholar 

  • Misra NN, Cheorun J (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 64:74–86

    Article  CAS  Google Scholar 

  • Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3(3–4):159–170

    Article  Google Scholar 

  • Misra NN, Yadav B, Roopesh MS, Jo C (2019) Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Compr Rev Food Sci Food Saf 18(1):106–120

    Article  CAS  PubMed  Google Scholar 

  • Mondal K, Lalvani SB (2003) Mediator-assisted electrochemical hydrogenation of soybean oil. Chem Eng Sci 58(12):2643–2656

    Article  CAS  Google Scholar 

  • Na H, Mok C, Lee J (2020) Effects of plasma treatment on the oxidative stability of vegetable oil containing antioxidants. Food Chem 302:125306

    Article  CAS  PubMed  Google Scholar 

  • Niemira BA (2018) Chapter 4. cold plasma processing to improve food safety. In: Proctor A (ed) Alternatives to conventional food processing. Royal Society of Chemistry, pp 138–152

    Chapter  Google Scholar 

  • Nurrulhidayah AF, Man CY, Rohman A, Amin I, Shuhaimi M, Khatib A (2013) Authentication analysis of butter from beef fat using Fourier Transform Infrared (FTIR) spectroscopy coupled with chemometrics. Int Food Res J 20(3):1383

    CAS  Google Scholar 

  • Pedrow P, Hua Z, **e S, Zhu M-J (2020) Engineering principles of cold plasma. Advances in cold plasma applications for food safety and preservation. Elsevier, pp 3–48

    Chapter  Google Scholar 

  • Pérez-Andrés JM, Cropotova J, Harrison SM, Brunton NP, Cullen PJ, Rustad T, Tiwari BK (2020a) Effect of cold plasma on meat cholesterol and lipid oxidation. Foods 9(12):1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Andrés JM, de Alba M, Harrison SM, Brunton NP, Cullen PJ, Tiwari BK (2020b) Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage. LWT 118:108697

    Article  Google Scholar 

  • Petukhov I, Malcolmson LJ, Przybylski R, Armstrong L (1999) Storage stability of potato chips fried in genetically modified canola oils. J Am Oil Chem Soc 76(8):889–896

    Article  CAS  Google Scholar 

  • Pintauro PN (2011) Electrocatalytic hydrogenation of edible oils. Hydrogenation of Fats and Oils. Elsevier, pp 279–304

    Chapter  Google Scholar 

  • Puprasit K, Wongsawaeng D, Ngaosuwan K, Kiatkittipong W, Assabumrungrat S (2020) Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. Innov Food Sci Emerg Technol 66:102511

    Article  CAS  Google Scholar 

  • Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34(1):1–23

    Article  CAS  Google Scholar 

  • Sarangapani C, Keogh DR, Dunne J, Bourke P, Cullen PJ (2017) Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem 235:324–333

    Article  CAS  PubMed  Google Scholar 

  • Silveira MR, Coutinho NM, Esmerino EA, Moraes J, Fernandes LM, Pimentel TC, Cruz AG (2019) Guava-flavored whey beverage processed by cold plasma technology: bioactive compounds, fatty acid profile and volatile compounds. Food Chem 279:120–127

    Article  CAS  PubMed  Google Scholar 

  • Sivakanthan S, Madhujith T (2020) Current trends in applications of enzymatic interesterification of fats and oils: a review. LWT 132:109880. https://doi.org/10.1016/j.lwt.2020.109880

    Article  CAS  Google Scholar 

  • Sutar SA, Thirumdas R, Chaudhari BB, Deshmukh RR, Annapure US (2021) Effect of cold plasma on insect infestation and kee** quality of stored wheat flour. J Stored Prod Res 92:101774

    Article  CAS  Google Scholar 

  • Thirumdas R, Sarangapani C, Annapure US (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10:1–11

    Article  Google Scholar 

  • Thirumdas R, Trimukhe A, Deshmukh RR, Annapure US (2017) Functional and rheological properties of cold plasma treated rice starch. Carbohyd Polym 157:1723–1731

    Article  CAS  Google Scholar 

  • Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  • Turner M (2016) Physics of cold plasma. U: Cold plasma in food and agriculture fundamentals and applications (Misra, NN, Schlüter, O., Cullen, PJ)

  • Upadhyay R, Thirumdas R, Deshmukh RR, Annapure U, Misra NN (2020) An exploration of the effects of low-pressure plasma discharge on the physico-chemical properties of chia (Salvia hispanica L.) flour. J Eng Process Manag 11(2):73–80

    Article  Google Scholar 

  • Van Durme J, Vandamme J (2016) Non-thermal plasma as preparative technique to evaluate olive oil adulteration. Food Chem 208:185–191

    Article  PubMed  Google Scholar 

  • Van Durme J, Nikiforov A, Vandamme J, Leys C, De Winne A (2014) Accelerated lipid oxidation using non-thermal plasma technology: Evaluation of volatile compounds. Food Res Int 62:868–876

    Article  Google Scholar 

  • Wang T, Zhang X, Wang H, Yuan T, Yu D, Wang L, Jiang L (2019) Study on the electrochemical hydrogenation of soybean oil under H2 conditions. J Oleo Sci 68(4):311–320

    Article  CAS  PubMed  Google Scholar 

  • Wang W-H, Liu X, Bao M (2020) Hydrogenation of fats and oils using supercritical carbon dioxide. Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 347–356

    Chapter  Google Scholar 

  • Whitehead JC (2016) The chemistry of cold plasma. cold plasma in food and agriculture. Academic press, USA, pp 53–78

    Chapter  Google Scholar 

  • Yepez XV, Keener KM (2016) High-voltage Atmospheric Cold Plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innov Food Sci Emerg Technol 38:169–174

    Article  CAS  Google Scholar 

  • Yu D, Li X, Wang Y, Zou D, Hu L, Zheng H, Elfalleh W (2017) The influence of supercritical carbon dioxide (SC-CO 2) on electrolytes and hydrogenation of soybean oil. J Am Oil Chem Soc 94(7):993–1001

    Article  CAS  Google Scholar 

  • Yusem GJ, Pintauro PN (1992) The electrocatalytic hydrogenation of soybean oil. J Am Oil Chem Soc 69(5):399–404

    Article  CAS  Google Scholar 

  • Zaccheria F, Psaro R, Ravasio N, Bondioli P (2012) Standardization of vegetable oils composition to be used as oleochemistry feedstock through a selective hydrogenation process. Eur J Lipid Sci Technol 114(1):24–30

    Article  CAS  Google Scholar 

  • Zhu Y, Li C, Cui H, Lin L (2020) Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol 99:142–151

    Article  CAS  Google Scholar 

Download references

Funding

No funding were involved for this review.

Author information

Authors and Affiliations

Authors

Contributions

RT: Idea, writing, conceptualization, data collection.

Corresponding author

Correspondence to Rohit Thirumdas.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumdas, R. Partial hydrogenation of oils using cold plasma technology and its effect on lipid oxidation. J Food Sci Technol 60, 1674–1680 (2023). https://doi.org/10.1007/s13197-022-05434-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-022-05434-z

Keywords

Navigation