Log in

Optimization of debittering and deacidification parameters for Pomelo juice and assessment of juice quality

  • Short Communication
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Bitterness and tartness are one of the crucial reasons for the poor commerciality of Pomelo fruits. The present study intends to optimize the process variables such as resin concentration (Amberlite IRA-400) (3–10 g), time exposure (10–60 s), and stirring speed (300–1000 rpm) for removal of naringin content and tartness using response surface methodology. All the independent variables have shown a significant effect on naringin content, titrable acidity, and vitamin C content of pomelo juice. The optimized process variables for debittering and deacidification were 3.27 g resin concentration, 60 s time and 1000 rpm stirring speed, and the naringin content and titrable acidity at these optimized conditions were 0.22 mg ml−1 and 0.64% citric acid equivalent respectively. The treated juice under optimum conditions was analyzed for physicochemical properties where pH, clarity, and L* value of juice increased. In contrast, total soluble solids, vitamin C content, and a* value decreased slightly. The finding of present investigation will be helpful to improve the commercial acceptability of the sour variety of citrus fruit juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • AOAC (2005) Official methods of analysis. Association of Official Analytical Chemists, AOAC, Washington

    Google Scholar 

  • Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, Morales J (2016) Morin flavonoid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PloS one 11(11).

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76.

    CAS  Google Scholar 

  • Bharali R, Saikia L (2003) Physico-chemical changes associated with growth and development of pummelo (Rabab Tenga, white flesh, Citrus grandis L.) fruit. J Food Sci Technol 41(6):696–699.

    Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  CAS  Google Scholar 

  • Che Zain MS, Lee SY, Teo CY, Shaari K (2020) Adsorption and desorption properties of total flavonoids from oil palm (Elaeis guineensis Jacq.) mature leaf on macroporous adsorption resins. Molecules 25(4):778.

    Article  Google Scholar 

  • Davis WB (1947) Determination of flavanones in citrus fruits. Anal Chem 19(7):476–478

    Article  CAS  Google Scholar 

  • Fernández-Vázquez R, Stinco CM, Hernanz D, Heredia FJ, Vicario IM (2013) Industrial orange juice debittering: effect on volatile compounds and overall quality attributes. Int J Food Sci Tech 48(9):1861–1867

    Article  Google Scholar 

  • Garcia-Castello EM, Rodriguez-Lopez AD, Mayor L, Ballesteros R, Conidi C, Cassano A (2015) Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci Technol 64(2):1114–1122.

    Article  CAS  Google Scholar 

  • Geng X, Ren P, Pi G, Shi R, Yuan Z, Wang C (2009) High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. J Chromatogr A 1216(47):8331–8338

    Article  CAS  Google Scholar 

  • Kammerer J, Kammerer DR, Carle R (2010) Impact of saccharides and amino acids on the interaction of apple polyphenols with ion exchange and adsorbent resins. J Food Eng 98(2):230–239

    Article  CAS  Google Scholar 

  • Kaya C, Şahbaz A, Arar Ö, Yüksel Ü, Yüksel M (2015) Removal of tartaric acid by gel and macroporous ion-exchange resins. Desalin Water Treat 55(2):514–521

    Article  CAS  Google Scholar 

  • Kola O, Kaya C, Duran H, Altan A (2010) Removal of limonin bitterness by treatment of ion exchange and adsorbent resins. Food Sci Biotechnol 19(2):411–416

    Article  CAS  Google Scholar 

  • Kore VT, Chakraborty I (2015) Efficacy of various techniques on biochemical characteristics and bitterness of pummelo juice. J Food Sci Technol 52(9):6073–6077

    Article  CAS  Google Scholar 

  • Li N, Wei Y, Li X, Wang J, Zhou J, Wang J (2019) Optimization of deacidification for concentrated grape juice. Food Sci Nutr 7(6):2050–2058

    Article  CAS  Google Scholar 

  • Marchitan N, Cojocaru C, Mereuta A, Duca G, Cretescu I, Gonta M (2010) Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol 75(3):273–285

    Article  CAS  Google Scholar 

  • Mishra P, Kar R (2003) Treatment of grapefruit juice for bitterness removal by Amberlite IR 120 and Amberlite IR 400 and alginate entrapped naringinase enzyme. J Food Sci 68(4):1229–1233

    Article  CAS  Google Scholar 

  • Mishra P, Kalita D (2017) Assessment of pre-treatment of edible coatings prepared from gelatine and polyphenols (extracted under optimized conditions from amla fruit powder) on stability of banana chips. Acta Aliment Hung 46(2):196–205

    Article  CAS  Google Scholar 

  • Ni H, Yang YF, Chen F, Ji HF, Yang H, Ling W, Cai HN (2014) Pectinase and naringinase help to improve juice production and quality from pummelo (Citrus grandis) fruit. Food Sci Biotechnol 23(3):739–746

    Article  CAS  Google Scholar 

  • Proteggente AR, Saija A, De Pasquale A, Rice-Evans CA (2003) The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic Res 37(6):681–687.

    Article  CAS  Google Scholar 

  • Scordino M, Di Mauro A, Passerini A, Maccarone E (2003) Adsorption of flavonoids on resins: hesperidin. J Agri Food Chem 51(24):6998–7004

    Article  CAS  Google Scholar 

  • Stinco CM, Fernández-Vázquez R, Hernanz D, Heredia FJ, Meléndez-Martínez AJ, Vicario IM (2013) Industrial orange juice debittering: Impact on bioactive compounds and nutritional value. J Food Eng 116(1):155–161

    Article  CAS  Google Scholar 

  • Vera E, Ruales J, Dornier M, Sandeaux J, Persin F, Pourcelly G, Vaillant F, Reynes M (2003) Comparison of different methods for deacidification of clarified passion fruit juice. J Food Eng 59(4):361–367

    Article  Google Scholar 

  • Wu S, Wang Y, Gong G, Li F, Ren H, Liu Y (2014) Adsorption and desorption properties of macroporous resins for flavonoids from the extract of Chinese wolfberry (Lycium barbarum L.). Food Bioprod Process 93:148–155

    Article  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the SERB-DST, India, for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Koch, P. & Mishra, P. Optimization of debittering and deacidification parameters for Pomelo juice and assessment of juice quality. J Food Sci Technol 57, 4726–4732 (2020). https://doi.org/10.1007/s13197-020-04687-w

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-020-04687-w

Keywords

Navigation