Log in

Heat pump assisted drying of agricultural produce—an overview

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abou-Ziyan HZ, Ahmed MF, Metwally MN, Abd El-Hameed HM (1997) Solar-assisted R22 and R134a heat pump systems for low-temperature applications. Appl Therm Eng 17(5):455–469

    Article  CAS  Google Scholar 

  • Achariyaviriya S, Soponronnarit S, Terdyothin A (2000) Mathematical model development and simulation of heat pump fruit dryer. Drying Technol 18:479–491

    Article  Google Scholar 

  • Alves-Filho O (2002) Combined innovation heat pump drying technologies and new cold extrusion techniques for production of instant foods. Drying Technol, HPD special issue 20(8):1541–1557

    Google Scholar 

  • Alves-Filho O, Eikevik TM (2009) Acceleration of heat pump atmospheric freeze drying of green peas by controlled fluidization and infrared radiation. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun, Reykjavik, Iceland (CD-ROM)

  • Alves-Filho O, Strommen I (1996a) Application of heat pump in drying of biomaterials. Drying Technol 14:2061–2090

    Article  Google Scholar 

  • Alves-Filho O, Strommen I (1996b) Performance and improvements in heat pump dryers. In: Strumillo C, Pakowski Z (eds) Drying technol 96. Poland: Krakow, pp 405–415

  • Alves-Filho O, Strommen I (1996c) Performance and improvements in heat pump dryers. Drying 96—Proceedings of the 10th International Drying Symposium, Krakow, Poland, 30 July-2Aug, vol. A, pp 405–416

  • Alves-Filho O, Strommen I, Thorbergsen E (1997) Simulation model for heat pump dryer plants for fruits and roots. Drying Technol 15:1369–1398

    Article  CAS  Google Scholar 

  • Alves-Filho O, Thorbergsen, Strommen I (1998) A component model for simulation of multiple fluduzed bed heat pump dryers. Drying 98-Proceedings of the 11th International Drying Symposium (IDS 98), Halkidiki, Greece, August 19–22: 94–10

  • Alves-Filho O, Eikevik TM, Mulet A (2007) Kinetics and mass transfer during atmospheric freeze drying of red pepper. Drying Technol 25(7–8):1155–1161

    Article  Google Scholar 

  • Alves-Filho O, Eikevik TM, Goncharova-Alves SV (2008) Single-and multistage heat pump drying of protein. Drying Technol 26(4):470–475

    Article  CAS  Google Scholar 

  • Alves-Filho O, Eikevik TM, Walberg M, Fridberg C (2009) Energy and thermal efficiency analysis for combined spray drying and heat pump systems. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun, Reykjavik, Iceland (CD-ROM)

  • Andres A, Bilbao C, Fito P (2004) Drying kinetics of apple cylinders under combined hot air microwave dehydration. J Food Eng 63:71–78

    Article  Google Scholar 

  • Anonymous (2009) Fruits and vegetables (accessed November 27). http://www.pfndai.com/Processed

  • Arabhosseini A, Padhye S, Huisman W, Van-Boxtel A, Müller J (2010) Effect of drying on the color of tarragon (Artemisia dracunculus L.) leaves. Food Bioprocess Technol. doi:10.1007/s11947-009-0305-9

    Google Scholar 

  • Baines PG, Carrington CG (1988) Analysis of rankine cycle heat pump driers. Int J Energy Res 12(3):495–510

    Article  CAS  Google Scholar 

  • Baker GJ (1997) Industrial drying of foods, chap 4. Chapman and Hall, London, pp 65–89

    Book  Google Scholar 

  • Bantle M, Eikevik TM, Rustad T (2009) Atmospheric freeze-drying of calanus finmarchicus and its effects on proteolytic and lipolytic activities 4th Nordic Drying Conf, June 17–19, Reykjavik, Iceland

  • Best R, Soto W, Pilatowsky I, Gutierrez LJ (1994) Evaluation of a rice drying system using a solar assisted heat pump. Renewable Energy 5(1–4):465–468

    Article  Google Scholar 

  • Best R, Cruz JM, Gutierrez J, Soto W (1996) Experimental results of a solar assisted heat pump rice drying system. Renewable Energy 9(1–4):690–694

    Article  Google Scholar 

  • Bhartia P, Stuchly SS, Hamid MAK (1973) Experimental results for combinational microwave and hot air drying. J Microwave Power 8(3):245–252

    Google Scholar 

  • Boonnattakorn R, Phoungchandang S, Leenanon B, Khajarern S, Khajarern J (2004) The comparative study of garlic powder processing by heated air and dehumidifier heat pump dryer. Food Constant J 34(3):248–260

    Google Scholar 

  • Brodyansky VM, Sorin MV, Le Goff P (1994) The efficiency of industrial processes: exergy analysis and optimization. Elsier, Amsterdam, Book (ISBN 0444899960) B76

    Google Scholar 

  • Brook RC (1986) Heat pumps for near-ambient grain drying: a performance and economics feasibility study. Agric Eng 41(2):52–57

    Google Scholar 

  • Carrington CG, Baines PG (1988) Second law limits in convective heat pump driers. Int J Energy Res 12:481–494

    Article  CAS  Google Scholar 

  • Cartwright WG (1987) Computer modelling of an energy-efficient drying plant. 4th Asean Energy Conference - Energy Technology, pp. 268–279

  • Cengel YA, Boles MA (1998) Thermodynamics: an engineering approach, 3rd edn. McGraw-Hill, p 1056

  • Charters WWS, de Forest L, Dixon CWS, Taylor LE (1980) Design and performance of solar boosted heat pumps. In: Australian and New Zealand solar energy society annual conference, Melbourne

  • Chegini G, Khayaei J, Rostami HA, Sanjari AR (2007) Designing of a heat pump dryer for drying of plum. J Res Appli Agric Eng 52(2):63–65

    Google Scholar 

  • Chen P, Pei DCT (1989) A mathematical model of drying processes. Int J Heat Mass Transfer 32(2):297–310

    Article  CAS  Google Scholar 

  • Chen HH, Huang TC, Tsai CH, Mujumdar AS (2008) Development and performance analysis of a new solar energy assisted photo catalytic dryer. Drying Technol 26:503–507

    Article  CAS  Google Scholar 

  • Chottanom P, Phoungchandang S (2005) The development of osmotically dehydrated mangoes using conventional drying and dehumidified drying. Chem Engi Trans 6:897–902

    Google Scholar 

  • Chou SK, Chua KJ (2001) New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci Technol 12:359–369

    Article  Google Scholar 

  • Chou SK, Hawlader MNA, Ho JC, Wijeysundera NE, Rajasekar S (1993) Heat pump in the drying of food products. Int J Energy Res 14:397–406

    Google Scholar 

  • Chou SK, Hawlader MNA, Chua KJ, Teo CC (1997) A methodology for tunnel dryer chamber design. Int J Energy Res 21:395–410

    Article  CAS  Google Scholar 

  • Chou SK, Chua KJ, Hawlader MNA, Ho JC (1998) A two-stage heat pump dryer for better heat recovery and product quality. J Institute of Engineers, Singapore 38:8–14

    Google Scholar 

  • Chou SK, Chua KJ, Mujumdar AS, Tan M, Tan SL (2001) Study on the osmotic pretreatment and infrared radiation on drying kinetics and colour changes during drying of agricultural products. ASEAN J Sci Technol Dev 18(1):11–23

    Google Scholar 

  • Chua KJ, Mujumdar AS, Chou SK, Hawlader MNA, Ho JC (2000) Convective drying of banana, guava and potato pieces: effect of cyclical variations of air temperature on convective drying kinetics and colour change. Drying Technol 18(5):907–936

    Article  CAS  Google Scholar 

  • Chua KJ, Mujumdar AS, Hawlader MNA, Chou SK, Ho JC (2001) Batch Drying of Bannana Pieces-Effect of Stepwise Change in Drying Air Temperature on Drying Kinetics and Product Colour. Food Res Int 34:721–731

    Google Scholar 

  • Chua KJ, Chou SK, Hawlader MNA, Ho JC, Mujumdar AS (2002a) On the study of time-varying temperature drying—effect on drying kinetics and product quality. Drying Technol 20(8):1579–1610

    Article  Google Scholar 

  • Chua KJ, Chou SK, Ho JC, Hawlader MNA (2002b) Heat pump drying: recent developments and future trends. Drying Technol-An Int J 1532–2300, 20(8): 1579–1610

    Google Scholar 

  • Clark DE (1996) Microwave processing of materials. Annu Rev Mater Sci 26:299–331

    Article  CAS  Google Scholar 

  • Claussen IC, Andresen T, Eikevik TM, Strommen I (2007) Atmospheric freeze drying—modeling and simulation of a tunnel dryer. Drying Technol 25(12):1959–1965

    Article  Google Scholar 

  • Clements S, Ha X, Jolly P (1993) Experimental verification of a heat pump assisted continuous dryer simulation model. Int J Energy Res 17:19–28

    Article  CAS  Google Scholar 

  • Daghigh R, Ruslan MH, Alghoul1 MA, Zaharim A, Sopian K (2009) Design of nomogram to predict performance of heat pump dryer. Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Sources, La Laguna, Tenerife, Canary Islands, Spain, July 1–3, pp 277–282

  • Dincer I, Cengel (2001) Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3:116–149

    Article  Google Scholar 

  • Donsi G, Ferrari G, Di MP (2001) Utilization of combined processes in freeze-drying of shrimps. Food Bioprod Process: Transactions of the Institution of Chemical Engineers, Part C 79(3):152–159

    Article  Google Scholar 

  • FAS Online (2009) World raisin situation and outlook. http://gain.fas.usda.gov//Raisin%20Annual_BuenosArgentina_7-16-2010.pdf

  • Fatouh M, Metwally MN, Helali AB, Shedid MH (2006) Herbs drying using a heat pump dryer. Energy Convers Manage 47(15–16):2629–2643

    Article  Google Scholar 

  • Feng X, Zhu XX, Zheng JP (1996) A practical exergy method for system analysis. Proceeding of the 31st Intersociety Energy Conversion Engineering Conference, IECEC 96, 11–16 Aug, Washington DC, pp 2068–2071

  • Feng H, Tang J, Cavalieri RP, Lumb OA (2001) Heat and mass transport in microwave drying of hygroscopic porous materials in a spouted bed. AIChE J 74(7):1499–1511

    Article  Google Scholar 

  • Flikke AM, Cloud HA, Hustrulid (1957) Grain drying by heat pump. Agric Eng 38(8):592–597

    Google Scholar 

  • Fritz VA, Cloud HA, Deef RF, Borowski AM (1990) A versatile heat pump seed dryer. Hortic Sci 25(8):977–978

    Google Scholar 

  • Funebo T, Ohlsson T (1998) Microwave-assisted air dehydration of apple and mushroom. J Food Eng 38:353–367

    Article  Google Scholar 

  • Gac A, Vrinat G, Blaise JC, Camous JP, Fleury M (1988) Guide for the design and operation of average and large capacity electric heat pumps. Int Inst Refrig, Paris, p 152

  • Gunasekaran S (1999) Pulsed microwave-vacuum drying of food materials. Drying Technol 17(3):395–412

    Article  Google Scholar 

  • Hawlader MNA, Bong TY, Yang Y (1998) A simulation and performance analysis of a heat pump batch dryer. In: Mujumdar AS, Series editor. Proc of the 11th Int Drying Symp, Halkidiki, Greece, August 19–22, pp 208–215

  • Hawlader MNA, Chou SK, Jahangeer KA, Rahman SMA, Lau KWE (2003) Solar-assisted heat-pump dryer and water heater. Appli Energy 7(1): 185–193(9)

    Google Scholar 

  • Hawlader MNA, Perera CO, Tian M (2006) Properties of modified atmosphere heat pump dried foods. Food Eng 74:392–401

    Article  Google Scholar 

  • Haywood RW (1974a) A critical review of theorems of thermodynamic availability with concise formulations Part 1: availability. I Mech Eng Sci 16(2):160–173

    Article  Google Scholar 

  • Haywood RW (1974b) A critical review of theorems of thermodynamic availability with concise formulations Part 2: irreversibility. I Mech Eng Sci 16(2):160–173

    Article  Google Scholar 

  • Heap RD (1979) Heat pumps. In: E and F. N. Spon, London, p1–2.

    Google Scholar 

  • Hesse B (1995) Energy efficient electric drying systems for industry. Drying Technol 13(1):1543–1562

    Article  Google Scholar 

  • Hogan MR, Ayers DL, Muller RE Jr, Foster GH, Rall EC, Doering OC (1983) Heat pump for low-temperature grain drying. Trans ASAE 26(4):1234–1238

    Google Scholar 

  • Islam MR, Mujumdar AS (2004) In: Mujumdar AS (ed) Heat pump assisted drying- in guide to industrial drying. Colour, Mumbai, pp 187–210

    Google Scholar 

  • Jangam SV, Joshi VS, Mujumdar AS, Thorat BN (2008) Studies on dehydration of sapota (Achras zapota). Drying Technol 26:369–377

    Article  CAS  Google Scholar 

  • Japan Statistics Bureau (2000) Japan statistical year book. Government of Japan: Management and Coordination Agency

  • Jia X, Jolly P, Clemets S (1990) Heat pump assisted continuous drying part 2: simulation results. Int J Energy Res 14:771–782

    Article  CAS  Google Scholar 

  • Jia X, Clements S, Jolly P (1993) Study of heat pump assisted microwave drying. Drying Technol 11(7):1583–1616

    Article  CAS  Google Scholar 

  • Jia LW, Islam MR, Mujumdar AS (2003) A simulation study on convection and microwave drying of different food products. Drying Technol 21(8):1549–1574

    Article  Google Scholar 

  • Jolly P, Jia X, Clements S (1990) Heat pump assisted continuous drying part I: a simulation model. Int J Energy Res 14(7):757–770

    Article  CAS  Google Scholar 

  • Jones P (1992) Electromagnetic wave energy in drying processes. In: Mujumdar AS (ed) Drying 92. Elsevier Science Publisher BV, pp 114–136

  • Jorgensen SE (2001) The thermodynamic concept: exergy. In: Jorgensen SE (ed) Thermodynamics and ecological modelling. Lewis, Boca Raton, pp 153–163

    Google Scholar 

  • Kato K (1985) Exergy evaluation in grain drying. In: Mujumdar AS (ed) Drying 85. Hemisphere Publishing Co., p 420–427

  • Keeye RB (1978) Introduction to industrial drying operations. Pergamon, New York

    Google Scholar 

  • Klocker K, Schmidt EL, Steimle F (2002) A drying heat pump using carbon dioxide as working fluid. Drying Technol, HPD special issue 20(8):1659–1671

    CAS  Google Scholar 

  • Kohayakawa MN, Silveria-Junior V, Telis-Romero J, (2004) Drying of mango slices using heat pump dryer. Paper presented at the Proceedings of the 14th Int Drying Symp, Sao Paulo, Brazil, 22–25 August

  • Kudra T, Mujumdar AS (2001) Advanced drying technologies. Marcel Dekker, New York, p 457

    Google Scholar 

  • Kudra T, Mujumdar AS (2002) Advanced drying technologies- book, Radio frequency assisted heat pump drying-chapter 31: 407–408

  • Law C, Mujumdar AS (2007) Fluidized bed dryers. Handbook of industrial drying, 3rd edn, chapter 8, pp 174–193

  • Lawand CL, Mjumdar AS (2007) Hand book of industrial drying, 3rd edn. CRC Press, p 192

  • Lawton J (1978) Drying: the role of heat pumps and electromagnetic fields. Phys Technol 9:p214–p220

    Article  Google Scholar 

  • Lazzarin R (1994) Heat pumps in industry—I. Equipment. Heat Recovery Syst CHP 14(6):581–597

    Article  CAS  Google Scholar 

  • Lazzarin R (1995) Heat pumps in industry—II. Applications. Heat Recovery Syst CHP 15(3):305–317

    Article  CAS  Google Scholar 

  • Lin TM, Durance TD, Scaman CH (1998) Characterization of vacuum microwave, air and freeze-dried carrot slices. Food Res Int 31:111–117

    Article  Google Scholar 

  • Liu L (2003) Entry into supermarket of agricultural products after entering WTO. Agric Prod Process 6(5):4–5

    Google Scholar 

  • Lu A (2007) Heat pumps. Encyclopedia of energy engineering and technology - 3 volume set (print version). In: Barney L, Capehart (eds) CRC Press, p 814

  • Lu A, Charters WWS (2003) Electrical and engine driven heat pumps for effective utilisation of renewable energy resources. Appli Therm Eng 23(10):1295–1300

    Article  Google Scholar 

  • Lu A, Fuller RJ, Charters WWS (2005) Ambient energy fraction of a heat pump. renewable energy for a sustainable future—a challenge for a post carbon world ANZSES 2005, Reviewed as full paper, pp 1–7

  • Marshall MG, Metaxas AC (1998) Modeling the radio frequency electric field strength developed during the RF assisted heat pump drying of particulates. Int Microwave Power Inst 33:167–177

    Google Scholar 

  • Marshall MG, Metaxas AC (1999) Radio frequency assisted heat pump drying of crushed brick. Appli Therm Eng 19(4):375–388

    Article  CAS  Google Scholar 

  • Maskan M (2001) Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng 48:169–175

    Article  Google Scholar 

  • Mason RL, Blarcom AV (1993) Drying macadamia nuts using a heat pump dehumidifier. In: Development and application of heat pump dryer, at Brisbane, Australia, pp 1–7

  • Mason RL, Britnell PM, Young GS, Birchall S, Fitzpayne S, Hesse BJ (1994) Development and application of heat-pump dryers to the Australian food industry. Food Aust 46(7):319–322

    Google Scholar 

  • McCauley JF (1983) A simplification of the second law of thermodynamics. Energy Eng 80(3):51–65

    Google Scholar 

  • McGovern JA (1990) Exergy analysis-a different perspective on energy Part 1: the concept of exergy. Proc Inst Mech Engineerrs Part A: J Power and Energy 204:253–268

    Article  Google Scholar 

  • Mc Mullen JT, Morgan R (1981) Heat pumps. Adam Hilger Ltd, Bristol

    Google Scholar 

  • Meyer JP, Greyvenstein GP (1992) The drying of grain with heat pumps in South Africa: a techno-economic analysis. Int J Energy Res 16:13–20

    Article  CAS  Google Scholar 

  • Moran MJ, Sciubba E (1994) Exergy analysis: principles and practice. Trans ASME—J Eng Gas Turbine Power 116:285–290

    Article  CAS  Google Scholar 

  • Mujumdar AS (1991) Drying technologies of the future. Drying Technol 9:325–347

    Article  Google Scholar 

  • Mujumdar AS (2007) An overview of innovation in industrial drying: current status and R&D needs. Transp Porous Media 66:3–18

    Article  Google Scholar 

  • Mujumdar AS, Law CL (2010) Drying technology: trends and applications in postharvest processing. Food Bioprocess Technol 3:843–852

    Article  Google Scholar 

  • Mujumdar AS, Devahastin S, Ernest CKJ (2002) Mini-workshop on industrial drying. King Monkut’s University Technol Thonburi, Bangkok, p 217, April 22

  • Newbert GJ (1985) Energy efficient drying, evaporation and similar processes. J Heat Recovery Syst 5:551–559

    Article  Google Scholar 

  • Nijhuis HH, Torringa HM, Muresan S, Yuksel D, Leguijt C, Kloek W (1998) Approaches to improving the quality of dried fruit and vegetables. Trends Food Sci Technol 9:13–20

    Article  CAS  Google Scholar 

  • Ogura H, Ymamoto T, Kage H, Matsuno Y, Mujumdar AS (2002) Effects of heat exchange condition on hot air production by a chemical heat pump dryer using CaO/H2O/Ca(OH)2 reaction. Chem Eng J 86:3–10

    Article  CAS  Google Scholar 

  • Ogura H, Ishida H, Kage H, Mujumdar AS (2003) Enhancement of energy efficiency of a chemical heat pump-assisted convective dryer. Drying Technol 21:279–292

    Article  CAS  Google Scholar 

  • Ogura H, Yamamoto T, OtsuboY, Hiroki Ishida H, Kage H, Mujumdar AS (2004) Controllability of a chemical heat pump dryer. Drying 2004Proc 14th Int Drying Sym, São Paulo, Brazil, 22–25 Aug vol B, pp 998–1004

  • Ogura H, Yamamoto T, Otsubo Y (2005) A control strategy for a chemical heat pump dryer. Drying Technol 23(6):1189–1203

    Article  CAS  Google Scholar 

  • Ogura H, Yasuda S, Otsubo Y, Mujumdar AS (2007) Continuous operation of a chemical heat pump. Asia-Pacific J Chem Engi, Special Issue: Thermal Dehydration II, 2(2):118–123

    Google Scholar 

  • Okos MR, Narsimhan G, Singh RK, Weitnauer AC (1992) Food dehydration. In: Heldman DR, Lund DB (eds) Handbook of food engineering. Marcel Dekker, New York, pp 437–562

    Google Scholar 

  • Oktay Z, Hepbasil A (2003) Performance evaluation of a heat pump assisted mechanical opener dryer. Energy Convers Manage 44:1193–1207

    Article  Google Scholar 

  • Oliver TN (1982) Process drying with a dehumidifying heat pump. Paper C2 presented at the Int Sym on the Industrial Application of Heat pumps, Coventry, England, 24–26 March, pp 73–88

  • O’Neill MB, Rahman MS, Perera CO, Smith B, Melton LD (1998) Colour and density of apple cubes dried in air and modified atmosphere. Int J Food Prop 1(3):197–205

    Article  Google Scholar 

  • Othman MY, Ruslan MH, Sopian K, Abdulmajid ZA (2008), Heat pump drying multifunctional solar thermal collector. World renewable energy congress, pp 1665–1670

  • O’Toole F, McGovern JA (1990) Some concepts and conceptual devices for exergy analysis. J Mech Engi Sci—Proc Inst Mech Eng 24:329–340

    Article  Google Scholar 

  • Paakkonen K, Havento J, Galambosi B, Pyykkonen M (1999) Infrared drying of herbs. Agric Food Sci Finl 8:19–27

    Google Scholar 

  • Pal US, Khan MK (2008) Calculation steps for the design of different components of heat pump dryer under constant drying rate condition. Drying Technol 26(7):864–872

    Article  Google Scholar 

  • Pendyala VR, Devotta S, Patwardhan VS (1986) The economics of heat pump assisted drying systems. Heat Recovery Syst 6(6):443–442

    Article  Google Scholar 

  • Pendyala VR, Devotta S, Patwadhan VS (1990) Heat pump-assisted dryer Part 1: mathematical model. Int J Energy Res 14:479–492

    Article  Google Scholar 

  • Perera CO, Rahman MS (1997) Heat pump dehumidifier drying of food. Trends Food Sci Technol 8:75–79

    Article  CAS  Google Scholar 

  • Phaphuangwittayakul W, Terdtoon P, Chaitep S, Tantakom P, Vorayos N, Fulford D (2000) Loop thermosyphon as an energy saver in heat-pump type dryer. Proc 6th Int Heat Pipe Symp, Chiang Mai, Thailand, pp 192–201

  • Phaphuangwittayakul W, Terdtoon P, Khamonpet P, Vorayos N, Klongpanich W, Fulford D (2002) Effect of by-pass air ratio and recirculation air ratio on heat transfer characteristics of heat-pump type dryer with looped thermosyphon as an energy saver. Proc 12th Int Heat Pipe Conf, Moscow, Russia, pp 525–530

  • Phaphuangwittayakul W, Khamonpet P, Terdtoon P, Klongpanich W, Vorayos N, Raghavan GSV (2003) Heat transfer characteristics of loop thermosyphon applied heat pump dryer. Proc 7th Int Heat Pipe Sym, Jeju, Korea, pp 231–236

  • Phoungchandang S (2009) Simulation model for heat pump-assisted dehumidified air drying for some herbs. World J Agric Sci 5(2):138–142

    Google Scholar 

  • Phoungchandang S, Sanchai P, Chanchotikul K (2003) The development of dehumidifying dryer for a Thai herb drying (Kaprao leaves). Food J 33(2):146–155

    Google Scholar 

  • Prasertsan S, Saen-saby P (1998) Heat pump drying of agricultural materials. Drying Technol 16(1–2):235–250

    Article  Google Scholar 

  • Prasertsan SP, Saen-Saby S, Prateepchaikul G, Ngamsritrakul P (1996) Effects of product drying rate and ambient condition on the operating modes of heat pump dryer. Drying 96-Proc 10th Int. Drying Symp, Krakow, Poland, 30 July-2Aug, vol. A, pp 529–534

  • Prasertsan S, Sean-saby P, Prateepchaikul G (1997) Heat pump dryer. Part 3: experiment verification of the simulation. Int J Energy Res 21:1–20

    Article  Google Scholar 

  • Rahman SMA, Islam MR, Mujumdar AS (2007) A study of couple heat and mass transfer in composite food products during convective drying. Drying Technol 25(7–8):1359–1368

    Article  Google Scholar 

  • Reay DA (1979) Industrial energy conservation. 2nd edition, Pergamon Press. Endeavour 4(2):85

    Google Scholar 

  • Reay DA, Macmichael DBA (1979) Heat pumps design and applications—a practical handbook for plant managers, engineers, architects and designers. Pergamon, Oxford

    Google Scholar 

  • Reay DA, Macmichael DBA (1988) Heat pumps. Pergamon, Oxford, p 58

    Google Scholar 

  • Rossi SJ, Neues C, Kicokbusch TG (1992) Thermodynamics and energetic evaluation of a heat pump applied to drying of vegetables. In: Mujumdar AS (ed) Drying’92. Elsevier Science, Amsterdam

    Google Scholar 

  • Ruiz DG, Martınez-Monzo J, Fito P, Chiralt A (2003) Modelling of dehydrationerehydration of orange slices in combined microwave/air drying. Innov Food Sci Emerg Technol 4(2):203–209

    Article  Google Scholar 

  • Saensabai P, Prasertsan S (2007) Condenser coil optimization and component matching of heat pump dryer. Drying Technol 25(9):1571–1580

    Article  CAS  Google Scholar 

  • Schmidt EL, Klocker K, Flacke N, Steimle F (1998) Applying the trans critical CO2 process to a drying heat pump. Int J Refrig 21(3):202–211

    Article  CAS  Google Scholar 

  • Sokhansanj S (1984) Grain drying simulation with respect to energy conservation and grain quality. In: Mujumdar AS (ed) Advances in drying, Hemisphere Publishing Co., pp 121–180

  • Soma J (1983) Exergy and productivity. Energy Eng 80(2):9–18

    Google Scholar 

  • Soponronnarit S, Taweerattanapanish A, Wetchacama S, Kongseri N, Wongpiyachon S (1998) Spin-off from paddy drying by fluidisation technique. Presented at the 7th Int Working Conf on Stored-Product Protection, Bei**g, China, 14–19th October

  • Sosle V, Raghavan GSV, Kittler R (2001) Experiences with a heat pump dehumidifier assisted drying system, Proc of the 1st Nordic Drying Conf, Trondheim, Norway, edited by Alves-Filho, Eikevik, and Strommen, 27–29 June, 29

  • Sporn P, Ambrose ER (1955) The heat pump and solar energy. Proc World Symp on Appl Solar Energy, Phoenix, Arizona, 1–5 Nov, pp 159–170

  • Strommen I (1986) Energy optimal temperature differences in heat pump driers. In: Mujumdar AS (ed) Drying of solid – recent international developments. Wiley, New York, pp 207–212

    Google Scholar 

  • Strommen I, Jonassen O (1996) Performance tests of a new 2-stage counter-current heat pump fluidized bed dryer. In: Strumillo C, Pakowski Z (eds) Drying 96, pp 563–568)

  • Strommen I, Kramer K (1994) New applications of heat pumps in drying process. Drying Technol 12(4):889–901

    Article  Google Scholar 

  • Strommen I, Eikevik TM, Odilio A-F (1999) Optimum design and enhanced performance of heat pump dryer. In: Abudullah K, Tamaunan AH, Maujumdar AS (eds) Proc first Asian-Australian Drying Conference, at Bali, Indonesia, 68

  • Strommen I, Alves-Filho O, Eikevik TM, Claussen IC (2002) Physical properties in drying of food with combined sublimation and evaporation, 13th Int Drying Symp, Vol C, pp 698–1705

  • Strumillo C, Adamiec J (1996) Energy and quality aspects of food drying. Drying Technol 14(2):423–448

    Article  Google Scholar 

  • Sunthonvit N, Srzednicki G, Craske J (2007) Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technol 25:877–881

    Article  CAS  Google Scholar 

  • Tai KW, Zylla R, Devotta S, Diggory PJ, Watson FA, Holland FA (1982a) The potential for heat pumps in drying and dehumidification systems- II: an experimental assessment of the heat pump characteristics of a heat pump dehumidification system using R114. Int J Energy Res 6(4):323–331

    Article  CAS  Google Scholar 

  • Tai KW, Devotta S, Watson FA, Holland FA (1982b) The potential for heat pumps in drying and dehumidification systems- III: an experimental assessment of the heat pump characteristics of a heat pump dehumidification system using R114. Int J Energy Res 6(4):333–340

    Article  CAS  Google Scholar 

  • Teeboonma U, Tiansuwan J, Soponronnarit S (2003) Optimization of heat pump fruit dryers. J Food Eng 59:369–377

    Article  Google Scholar 

  • Thomas WJ (1996) RF drying provides process savings: new systems optimize radio frequency drying for the ceramic and glass fiber industries. Ceramic Industry Magazine pp 30–34

  • Topic R (1995) Mathematical model for exergy analysis of drying plants. Drying Technol 13(1 and 2):437–445

    Article  CAS  Google Scholar 

  • Tuley L (1996) Swell time for dehydrated vegetables. Int Food Ingred 4:23–27

    Google Scholar 

  • Turner LW, Jolly P (1990) The effect of dielectric properties on drying kinetics. J Microw Power Electromagn Energy 25(4):212–223

    Google Scholar 

  • Vázquez G, Chenlo F, Moreira R, Cruz E (1997) Grape drying in a pilot plant with a heat pump. Drying Technol 15(3 and 4):899–920

    Article  Google Scholar 

  • Wang S, Tang J, Johnson JA, Mitcham E, Hansen JD, Hallman G et al (2003) Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosyst Eng 85:201–212

    Article  Google Scholar 

  • Ying Y, Canren L (1993) The exergetic analysis of heat pump drying system. Proc 28th Inter Soci Energy Conversion Engi Conf, IECEC 93, 8–13 Aug, Atlanta GA, vol 1, pp 913–917

  • Yongsawatdigul J, Gunasekaran S (1996) Microwave-vacuum drying of cranberries. Part II: quality evaluation. J Food Procces Preserv 20:145–156

    Article  Google Scholar 

  • Zafri MAA, Othman MYH, Ruslan MH, Sopian K (2007) Development of a close loop solar collector. Regional Conference on Engineering Mathematics, Mechanics, Manufacturing and Architecture, Putrajaya, Malaysia, 27–28 November, pp 48–53

  • Zbicinski I, Jakobsen A, Driscoll JL (1992) Application of infrared radiation for drying of particulate material. In: Mujumdar AS (ed) Drying 92. Elsevier Sci Publisher BV, pp 704–711

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K.K., Kar, A. Heat pump assisted drying of agricultural produce—an overview. J Food Sci Technol 49, 142–160 (2012). https://doi.org/10.1007/s13197-011-0334-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0334-z

Keywords

Navigation