Log in

Finger millet (Eleusine coracana) — an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Rice, parboiled rice, finger millet, germinated finger millet, broken wheat, njavara (medicinal rice), sorghum and maize were used as substrates for solid state fermentation of Monascus purpureus at 28°C for 7 days using 2% seed medium as inoculum for the production of its metabolites. The fungus exhibited good growth in all the substrates. The fermented substrates were dried at 45°C and analysed for antihypercholesterolemic metabolite statins by standardized HPLC method and dietary sterol contents by spectrophotometric method using reference standards of statin (pravastatin and lovastatin) and cholesterol, respectively. Germinated finger millet yielded higher total statin production of 5.2 g/kg dry wt with pravastatin and lovastatin content of 4.9 and 0.37 g/kg dry wt respectively than other substrates which range from 1.04–4.41 g/kg. In addition to statin, monascus fermented germinated finger millet yielded dietary sterol of 0.053 g/kg dry wt which is 7.6 folds higher than the control. The value addition of finger millet by germination and fermentation with Monascus purpureus provides scope for development of functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon (2009) Ragi (finger Millet). Agricultural Marketing and Information Network, www.agmarknet.nic.in (17 March 2010)

  • Chen F, Hu X (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337

    Article  CAS  Google Scholar 

  • Chen M, Johns MR (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138

    Article  CAS  Google Scholar 

  • Clifton P (2002) Plant sterols and stanols-comparison and contrasts. Sterols versus stanols in cholesterol-lowering: is there a difference? Atherosclerosis Suppl 3:5–9

    Article  CAS  Google Scholar 

  • Egorova OV, Nikolayeva VM, Sukhodolskaya GV, Donova MV (2009) Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Molecular Catalysis B: Enzymatic 57:198–203

    Article  CAS  Google Scholar 

  • Ghanem KM, Ghanem NB, El-Refai AH (1990) Ergosterol production under optimized conditions by Penicillium crustosum Thom. J Islamic Acad Sci 3(1):30–34

    Google Scholar 

  • Heber D, Yip I, Ashley JM, Elashoof DA, Elashoof RM, Go VL (1999) Cholesterol-lowering effects of a proprietary Chinese red yeast rice dietary supplements. Am J Clin Nutr 69: 231–236

    CAS  Google Scholar 

  • Kieber RJ, Payne WJ, Appleton GS (1955) The sterol content of fungi-Methods for disrupting cells, extracting and determining sterols. Appl Environ Microbiol 3:249–251

    Google Scholar 

  • Law M (2000) Plant sterol and stanol margarines and health. Br Med J 320:861–864

    Article  CAS  Google Scholar 

  • Lee CL, Wang JJ, Kuo SL, Pan TM (2006) Monascus fermentation of dioscorea for increasing the production of cholesterol lowering agent — monacolin K and antiinflammation agent — monascin. Appl Microbiol Biotechnol 72:1254–1262

    Article  CAS  Google Scholar 

  • Lichtenstein AH (2002) Plant sterol and blood lipid levels. Curr Opin Clin Nutr Metab Care 5:147–152

    Article  CAS  Google Scholar 

  • Manzoni M, Bergomi S, Rollini M, Cavazzoni V (1999) Production of statins by filamentous fungi. Biotechnol Lett 21: 253–257

    Article  CAS  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statin by filamentous fungus and application of these cholesterol lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  Google Scholar 

  • Mbithi-Mwikya S, Van Camp J, Viru Y, Huyghebaert (2000) Nutrient and antinutrient changes in finger millet (Eleusine coracana) during sprouting. LWT Food Sci Technol 33:9–14

    CAS  Google Scholar 

  • No HK, Meyers SP (2004) Preparation of tofu using chitosanas a coagulant for improved shelf life. Int J Food Sci Technol 39: 133–141

    Article  CAS  Google Scholar 

  • Ostlund RE (2002) Phytosterols in human nutrition. Ann Rev Nutr 22:533–549

    Article  CAS  Google Scholar 

  • Plat J, Mensink RP (2001) Effects of plant sterols and stanols on lipid metabolism and cardiovascular risk. Nutr Metabol Cardiovasc Dis 11:31–40

    CAS  Google Scholar 

  • Pyo YP (2007) Production of a high value added soybean containing bioactive mevinolins and isoflavones. J Food Sci Nutr 12: 29–34

    Article  CAS  Google Scholar 

  • Sabir SM, Hayat I, Gardezi SDA. (2003) Estimation of sterols in edible fats and oils. Pakistan J Nutr 2(3):178–181

    Article  Google Scholar 

  • Sayyad SA, Panda BP, Javed S, Ali M (2007) Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl Microbiol Biotechnol 73: 1054–1058

    Article  CAS  Google Scholar 

  • Simons LA (2002) Additive effect of plant sterol-ester margarine and cerivastatin in lowering low-density lipoprotein cholesterol in primary hypercholesterolemia. Am J Cardiol 90: 737–740

    Article  CAS  Google Scholar 

  • Sripriya G, Usha Antony, Chandra TS (1997) Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chem 58:345–350

    Article  CAS  Google Scholar 

  • Su YC, Wang JJ, Lin TT, Pan TM. (2003) Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46

    CAS  Google Scholar 

  • Valera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar, D (2005) Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microbial Technol 37: 521–552

    Article  CAS  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vijayalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswaran, V., Vijayalakshmi, G. Finger millet (Eleusine coracana) — an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus . J Food Sci Technol 47, 426–431 (2010). https://doi.org/10.1007/s13197-010-0070-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-010-0070-9

Keywords

Navigation