Log in

Glycomic biomarkers are instrumental for suboptimal health status management in the context of predictive, preventive, and personalized medicine

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Objectives

Suboptimal health status (SHS), a reversible borderline condition between optimal health status and disease, has been recognized as a main risk factor for non-communicable diseases (NCDs). From the standpoint of predictive, preventive, and personalized medicine (PPPM/3PM), the early detection of SHS provides a window of opportunity for targeted prevention and personalized treatment of NCDs. Considering that immunoglobulin G (IgG) N-glycosylation levels are associated with NCDs, it can be speculated that IgG N-glycomic alteration might occur at the SHS stage.

Methods

A case–control study was performed and it consisted of 124 SHS individuals and 124 age-, gender-, and body mass index–matched healthy controls. The IgG N-glycan profiles of 248 plasma samples were analyzed by ultra-performance liquid chromatography instrument.

Results

After adjustment for potential confounders (i.e., age, levels of education, physical activity, family income, depression score, fasting plasma glucose, and low-density lipoprotein cholesterol), SHS was significantly associated with 16 IgG N-glycan traits at 5% false discovery rate, reflecting decreased galactosylation and fucosylation with bisecting GlcNAc, as well as increased agalactosylation and fucosylation without bisecting GlcNAc. Canonical correlation analysis showed that glycan peak (GP) 20, GP9, and GP12 tended to be significantly associated with the 5 domains (fatigue, the cardiovascular system, the digestive system, the immune system, and mental status) of SHS. The logistic regression model including IgG N-glycans was of moderate performance in tenfold cross-validation, achieving an average area under the receiver operating characteristic curves of 0.703 (95% confidence interval: 0.637–0.768).

Conclusions

The present findings indicated that SHS-related alteration of IgG N-glycans could be identified at the early onset of SHS, suggesting that IgG N-glycan profiles might be potential biomarker of SHS. The altered SHS-related IgG N-glycans are instrumental for SHS management, which could provide a window opportunity for PPPM in advanced treatment of NCDs and shed light on future studies investigating the pathogenesis of progression from SHS to NCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

AUC:

Area under the receiver operating characteristic curve

BMI:

Body mass index

CCA:

Canonical correlation analysis

CI:

Confidence interval

COACS:

China suboptimal health cohort study

CVD:

Cardiovascular diseases

DBP:

Diastolic blood pressure

DG:

Derived glycan

Fc:

Fragment crystallizable

FcγRs:

Fragment crystallizable γ receptors

FcγRIIB:

Fragment crystallizable γ receptor IIB

FcγRIII:

Fragment crystallizable γ receptor III

FcγRIIIA:

Fragment crystallizable γ receptor IIIA

FcγRIIIB:

Fragment crystallizable γ receptor IIIB

FPG:

Fasting plasma glucose

FDR:

False discovery rate

GlcNAc:

N-Acetylglucosamine

GP:

Glycan peak

HDL-C:

High-density lipoprotein cholesterol

HILIC:

Hydrophilic interaction liquid chromatography

IgG:

Immunoglobulin G

IS:

Ischemic stroke

LASSO:

Least absolute shrinkage and selection operator

LDL-C:

Low-density lipoprotein cholesterol

NCDs:

Non-communicable diseases

3PM/PPPM:

Predictive, preventive, and personalized medicine

ROC:

Receiver operating characteristic

SBP:

Systolic blood pressure

SD:

Standard deviation

SHS:

Suboptimal health status

T2DM:

Type 2 diabetes mellitus

TC:

Total cholesterol

TG:

Triglycerides

UPLC:

Ultra-performance liquid chromatography

References

  1. Wang W, Russell A, Yan Y. Traditional Chinese medicine and new concepts of predictive, preventive and personalized medicine in diagnosis and treatment of suboptimal health. EPMA J. 2014;5(1):4. https://doi.org/10.1186/1878-5085-5-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang W, Yan Y. Suboptimal health: a new health dimension for translational medicine. Clin Transl Med. 2012;1(1):28. https://doi.org/10.1186/2001-1326-1-28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. Epma J. 2021;12(4):403–433. https://doi.org/10.1007/s13167-021-00253-2.

  4. NCD Countdown 2030 collaborators. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392(10152):1072–1088. https://doi.org/10.1016/s0140-6736(18)31992-5.

  5. Ezzati M, Pearson-Stuttard J, Bennett JE, Mathers CD. Acting on non-communicable diseases in low- and middle-income tropical countries. Nature. 2018;559(7715):507–16. https://doi.org/10.1038/s41586-018-0306-9.

    Article  CAS  PubMed  Google Scholar 

  6. Nugent R. Preventing and managing chronic diseases. BMJ. 2019;364:l459. https://doi.org/10.1136/bmj.l459.

    Article  PubMed  Google Scholar 

  7. Wang H, Tian Q, Zhang J, Liu H, Zhang X, Cao W, et al. Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population-potential utility for innovative approach by predictive, preventive, and personalized medicine. EPMA J. 2020;11(2):147–60. https://doi.org/10.1007/s13167-020-00200-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan YX, Dong J, Liu YQ, Yang XH, Li M, Shia G, et al. Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health. 2012;89(2):329–38. https://doi.org/10.1007/s11524-011-9636-8.

    Article  PubMed  Google Scholar 

  9. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5(1):6. https://doi.org/10.1186/1878-5085-5-6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Liu X, Qiu J, Wang H, Liu D, Zhao Z, et al. Association between ideal cardiovascular health metrics and suboptimal health status in Chinese population. Sci Rep. 2017;7(1):14975. https://doi.org/10.1038/s41598-017-15101-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ge S, Xu X, Zhang J, Hou H, Wang H, Liu D, et al. Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study. EPMA J. 2019;10(1):65–72. https://doi.org/10.1007/s13167-019-0159-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alzain MA, Asweto CO, Zhang J, Fang H, Zhao Z, Guo X, et al. Telomere length and accelerated biological aging in the China suboptimal health cohort: a case-control study. OMICS. 2017;21(6):333–9. https://doi.org/10.1089/omi.2017.0050.

    Article  CAS  PubMed  Google Scholar 

  13. Sun Q, Xu X, Zhang J, Sun M, Tian Q, Li Q, et al. Association of suboptimal health status with intestinal microbiota in Chinese youths. J Cell Mol Med. 2020;24(2):1837–47. https://doi.org/10.1111/jcmm.14880.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Tian Q, Zhang J, Liu H, Zhang J, Cao W, et al. Blood transcriptome profiling as potential biomarkers of suboptimal health status: potential utility of novel biomarkers for predictive, preventive, and personalized medicine strategy. EPMA J. 2021;12(2):103–15. https://doi.org/10.1007/s13167-021-00238-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gornik O, Pavic T, Lauc G. Alternative glycosylation modulates function of IgG and other proteins - implications on evolution and disease. Biochim Biophys Acta. 2012;1820(9):1318–26. https://doi.org/10.1016/j.bbagen.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67. https://doi.org/10.1016/j.cell.2006.08.019.

    Article  CAS  PubMed  Google Scholar 

  17. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681. https://doi.org/10.1126/science.1235681.

    Article  CAS  PubMed  Google Scholar 

  18. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15(6):346–66. https://doi.org/10.1038/s41581-019-0129-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci U S A. 2013;110(24):9868–72. https://doi.org/10.1073/pnas.1307864110.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci U S A. 2017;114(13):3485–90. https://doi.org/10.1073/pnas.1702173114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gornik O, Wagner J, Pucic M, Knezevic A, Redzic I, Lauc G. Stability of N-glycan profiles in human plasma. Glycobiology. 2009;19(12):1547–53. https://doi.org/10.1093/glycob/cwp134.

    Article  CAS  PubMed  Google Scholar 

  23. Yu X, Wang Y, Kristic J, Dong J, Chu X, Ge S, et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine (Baltimore). 2016;95(28):e4112. https://doi.org/10.1097/md.0000000000004112.

    Article  CAS  Google Scholar 

  24. Wang Y, Klarić L, Yu X, Thaqi K, Dong J, Novokmet M, et al. The Association between glycosylation of immunoglobulin G and hypertension: a multiple ethnic cross-sectional study. Medicine (Baltimore). 2016;95(17):e3379. https://doi.org/10.1097/md.0000000000003379.

    Article  CAS  Google Scholar 

  25. Liu D, Li Q, Dong J, Li D, Xu X, **ng W, et al. The association between normal BMI with central adiposity and proinflammatory potential immunoglobulin G N-glycosylation. Diabetes Metab Syndr Obes. 2019;12:2373–85. https://doi.org/10.2147/dmso.S216318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu D, Zhao Z, Wang A, Ge S, Wang H, Zhang X, et al. Ischemic stroke is associated with the pro-inflammatory potential of N-glycosylated immunoglobulin G. J Neuroinflammation. 2018;15(1):123. https://doi.org/10.1186/s12974-018-1161-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lemmers RFH, Vilaj M, Urda D, Agakov F, Šimurina M, Klaric L, et al. IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochim Biophys Acta Gen Subj. 2017;1861(9):2240–9. https://doi.org/10.1016/j.bbagen.2017.06.020.

    Article  CAS  PubMed  Google Scholar 

  28. Greto VL, Cvetko A, Štambuk T, Dempster NJ, Kifer D, Deriš H, et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond). 2021;45(7):1521–31. https://doi.org/10.1038/s41366-021-00816-3.

    Article  CAS  Google Scholar 

  29. Yan YX, Liu YQ, Li M, Hu PF, Guo AM, Yang XH, et al. Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J Epidemiol. 2009;19(6):333–41. https://doi.org/10.2188/jea.je20080086.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.Mss.0000078924.61453.Fb.

    Article  PubMed  Google Scholar 

  31. Bagby RM, Ryder AG, Schuller DR, Marshall MB. The Hamilton Depression Rating Scale: has the gold standard become a lead weight? Am J Psychiatry. 2004;161(12):2163–77. https://doi.org/10.1176/appi.ajp.161.12.2163.

    Article  PubMed  Google Scholar 

  32. Liu D, Xu X, Li Y, Zhang J, Zhang X, Li Q, et al. Immunoglobulin G N-glycan analysis by ultra-performance liquid chromatography. J Vis Exp. 2020;(155):e60104. https://doi.org/10.3791/60104.

  33. Wang H, Li X, Wang X, Liu D, Zhang X, Cao W, et al. Next-generation (glycomic) biomarkers for cardiometabolic health: a community-based study of immunoglobulin G N-glycans in a Chinese Han population. OMICS. 2019;23(12):649–59. https://doi.org/10.1089/omi.2019.0099.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Yuan H, Lyu J, Meng X, Tian Q, Li Y, et al. Association of dementia with immunoglobulin G N-glycans in a Chinese Han population. NPJ Aging Mech Dis. 2021;7(1):3. https://doi.org/10.1038/s41514-021-00055-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu D, Chu X, Wang H, Dong J, Ge SQ, Zhao ZY, et al. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J Transl Med. 2018;16(1):235. https://doi.org/10.1186/s12967-018-1616-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun. 2015;57:1–13. https://doi.org/10.1016/j.jaut.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  37. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1(3):237–43. https://doi.org/10.1038/nm0395-237.

    Article  CAS  PubMed  Google Scholar 

  38. Mihai S, Nimmerjahn F. The role of Fc receptors and complement in autoimmunity. Autoimmun Rev. 2013;12(6):657–60. https://doi.org/10.1016/j.autrev.2012.10.008.

    Article  CAS  PubMed  Google Scholar 

  39. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012;18(9):1401–6. https://doi.org/10.1038/nm.2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev. 2013;12(2):685–98. https://doi.org/10.1016/j.arr.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  41. Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem. 2011;286(44):38329–40. https://doi.org/10.1074/jbc.M111.277681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin S, Wang Y, Wang X, Yan B, Lou W, Di W. Serum immunoglobulin G N-glycome: a potential biomarker in endometrial cancer. Ann Transl Med. 2020;8(12):748. https://doi.org/10.21037/atm-20-3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kemna MJ, Plomp R, van Paassen P, Koeleman CAM, Jansen BC, Damoiseaux J, et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine. 2017;17:108–18. https://doi.org/10.1016/j.ebiom.2017.01.033.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martin TC, Šimurina M, Ząbczyńska M, Martinic Kavur M, Rydlewska M, Pezer M, et al. Decreased immunoglobulin G core fucosylation, a player in antibody-dependent cell-mediated cytotoxicity, is associated with autoimmune thyroid diseases. Mol Cell Proteomics. 2020;19(5):774–92. https://doi.org/10.1074/mcp.RA119.001860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakano M, Mishra SK, Tokoro Y, Sato K, Nakajima K, Yamaguchi Y, et al. Bisecting GlcNAc Is a general suppressor of terminal modification of N-glycan. Mol Cell Proteomics. 2019;18(10):2044–57. https://doi.org/10.1074/mcp.RA119.001534.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta. 2006;1760(4):669–77. https://doi.org/10.1016/j.bbagen.2005.11.021.

    Article  CAS  PubMed  Google Scholar 

  47. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42. https://doi.org/10.1200/jco.2011.37.3472.

    Article  CAS  PubMed  Google Scholar 

  48. Hale G, Rebello P, Al Bakir I, Bolam E, Wiczling P, Jusko WJ, et al. Pharmacokinetics and antibody responses to the CD3 antibody otelixizumab used in the treatment of type 1 diabetes. J Clin Pharmacol. 2010;50(11):1238–48. https://doi.org/10.1177/0091270009356299.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Y, Scheerens H, Davis JC Jr, Deng R, Fischer SK, Woods C, et al. Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther. 2011;89(2):283–90. https://doi.org/10.1038/clpt.2010.311.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the participants and their families who donated their time and effort in hel** to make this study possible

Funding

The study was supported by a grant from the “Bei**g Talents Project (2020A17)”.

Author information

Authors and Affiliations

Authors

Contributions

Youxin Wang and Wei Wang contributed to the conception and design. Material preparation, data collection, and analysis were performed by **aoni Meng, Biyan Wang, **zhu Xu, Manshu Song, and Haifeng Hou. The first draft of the manuscript was written by **aoni Meng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Youxin Wang and Wei Wang guarantee this work, have full access to all of the data and take responsibility for the integrity of the data.

Corresponding author

Correspondence to Youxin Wang.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Capital Medical University, Bei**g, China (No.2009SY16).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations/explanations for all particular glycans can be found at the Supplementary Table 1.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wang, B., Xu, X. et al. Glycomic biomarkers are instrumental for suboptimal health status management in the context of predictive, preventive, and personalized medicine. EPMA Journal 13, 195–207 (2022). https://doi.org/10.1007/s13167-022-00278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-022-00278-1

Keywords

Navigation