Log in

Reconceptualising Word Problems as Exercises in Mathematical Modelling

Die Rekonzeptualisierung von Textaufgaben als Übungen in mathematischer Modellierung

  • Originalarbeit
  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Abstract

During the last 20 years, many scholars have argued in various ways that the (traditional) practice of word problems in school mathematics does not foster in students, indeed inhibits, a genuine disposition towards mathematical modelling and applied problem solving. In this article we give a brief review and discussion of this research, including a summary of earlier work culminating in the book by Verschaffel et al. (2000) and with special attention to the more recent empirical work. We begin with presenting the ascertaining studies documenting and illuminating the phenomenon of “suspension of sense-making” when doing school arithmetic word problems. Then we move to studies that have contributed to the explanation of the observed effects. This explanation is followed by a review of some recent design experiments wherein the modelling perspective has been implemented and tested. Afterwards we discuss some recent studies on the difficulties encountered by teachers who try to implement this new perspective into their daily classroom practices. Finally, we discuss a number of educational implications of the research done so far and some challenges for the future of teaching mathematical modelling.

Zusammenfassung

Im Verlauf der letzten 20 Jahre haben zahlreiche Wissenschaftler in verschiedenen Studien gezeigt, dass die traditionelle Art und Weise der schulischen Behandlung mathematischer Textaufgaben die Lernenden nicht hinsichtlich ihrer Modellierungskompetenzen fördert, sondern eher sogar behindert, dass sie angemessene Voraussetzungen für das Lösen angewandter Probleme erwerben. In diesem Artikel geben wir zunächst einen kurzen Überblick über die Forschung zu Textaufgaben und beziehen uns – mit einem Fokus auf neuere empirische Untersuchungen – u.a. auch auf diesbezügliche frühere Arbeiten, die im Buch von Verschaffel et al. (2000) veröffentlicht sind. Dabei beginnen wir mit der Beschreibung von Studien, die sich mit der Beschreibung und Erklärung des Phänomens des “suspension of sense-making” im Rahmen der schulischen Bearbeitung von arithmetischen Textaufgaben auseinandersetzen. Hierauf folgt die Analyse einiger experimenteller Untersuchungen, die sich mit einer verstärkten Implementation und Evaluation von Unterrichtsexperimenten befassen, in denen Modellierungsaspekten im Vordergrund stehen. Im Anschluss daran werden verschiedene Studien hinsichtlich der Schwierigkeiten analysiert, die sich bei der Implementation einer veränderten Herangehensweise in das tägliche Unterrichten ergeben.

Abschließend werden einige sich aus den Forschungsergebnissen ergebende didaktische Implikationen sowie sich daraus abzuleitende Herausforderungen noch zu leistender Forschung zur Vermittlung von Modellierungskompetenz diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. As pointed out by one of our reviewers, a similar response happened when Piaget’s conservation tasks were first replicated.

  2. This point was drawn to our attention by one of our reviewers.

References

  • Baruk, S. (1985). L’âge du capitaine. De l’erreur en mathématiques. Berlin: Springer.

    Google Scholar 

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering, and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—state, trends, and issues in mathematics education. Educational Studies in Mathematics, 22, 37–68.

    Article  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.), (2007). Modelling and applications in mathematics education (ICMI Study 14). New York: Springer.

    Google Scholar 

  • Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female underachievement in relation to “realistic” mathematical contexts. British Educational Research Journal, 20, 551–564.

    Article  Google Scholar 

  • Bonotto, C. (2009). Working towards teaching realistic mathematical modelling and problem posing in Italian classrooms. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 297–314). Rotterdam: Sense.

    Google Scholar 

  • Bonotto, C., & Wilczewski, E. (2007). I problemi di matematica nella scuola primaria: Sull’attivazione o meno di conoscenze di tipo realistico. In C. Bonotto (Ed.), Quotidianizzare la matematica (pp. 101–134). Lecce: La Biblioteca Pensa Multimedia.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer. Edited and translated by N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield.

    Google Scholar 

  • Burkhardt, H. (1994). Mathematical applications in school curriculum. In T. Husén, & T. N. Postlethwaite (Eds.), The international encyclopedia of education (2nd ed., pp. 3621–3624). Oxford: Pergamon Press.

    Google Scholar 

  • Caldwell, L. (1995). Contextual considerations in the solution of children’s multiplication and division word problems. Unpublished Master’s thesis, Queen’s University, Belfast, Northern Ireland.

  • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62, 211–230.

    Article  Google Scholar 

  • Cognition and Technology Group at Vanderbilt (1997). The Jasper project: Lessons in curriculum, instruction, assessment, and professional development. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Cooper, B., & Dunne, M. (1998). Anyone for tennis? Social class differences in children’s responses to National Curriculum mathematics testing. Sociological Review, 46, 115–148.

    Article  Google Scholar 

  • Cooper, B., & Harries, T. (2009). Realistic contexts, mathematics assessment, and social class: Lessons for policy from an English research programme. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 93–110). Rotterdam: Sense.

    Google Scholar 

  • Csíkos, C. (2003). How many buses are needed? Hungarian students’ achievement on ‘problematic’ word problems. Paper presented at the 10th European Conference for Research on Learning and Instruction, Padova, Italy, August 2003.

  • DeFranco, T. C., & Curcio, F. R. (1997). A division problem with a remainder embedded across two contexts: Children’s solutions in restrictive versus real-world settings. Focus on Learning Problems in Mathematics, 19(2), 58–72.

    Google Scholar 

  • Depaepe, F., De Corte, E., & Verschaffel, L. (2009a). Analysis of the realistic nature of word problems in upper elementary mathematics education in Flanders. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 245–264). Rotterdam: Sense.

    Google Scholar 

  • Depaepe, F., De Corte, E., & Verschaffel, L. (2009b). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education. doi:10.1016/j.tate.2009.03.016

    Google Scholar 

  • Frankenstein, M. (2009). Develo** a critical mathematical numeracy through real real-world word problems. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 111–130). Rotterdam: Sense.

    Google Scholar 

  • Gainsburg, J. (2009). How and why secondary mathematics teachers make (or don’t make) real-world connections in teaching. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 265–282). Rotterdam: Sense.

    Google Scholar 

  • Gerofsky, S. (1997). An exchange about word problems. For the Learning of Mathematics, 17(2), 22–23.

    Google Scholar 

  • Gerofsky, S. (2009). Genre, simulacra, impossible exchange, and the real: How postmodern theory problematizes word problems. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 21–38). Rotterdam: Sense.

    Google Scholar 

  • Greer, B. (1993). The modelling perspective on wor(l)d problems. Journal of Mathematical Behavior, 12, 239–250.

    Google Scholar 

  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7, 293–307.

    Article  Google Scholar 

  • Greer, B., & Verschaffel, L. (2007). Modelling competencies—overview. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (ICMI Study 14) (pp. 219–224). New York: Springer.

    Chapter  Google Scholar 

  • Hatano, G. (1997). Commentary: Cost and benefit of modelling activity. Learning and Instruction, 7, 383–387.

    Article  Google Scholar 

  • Hidalgo, M. C. (1997). L’activation des connaissances à propos du monde réel dans la résolution de problèmes verbaux en arithmétique. Unpublished doctoral dissertation, Université Laval, Québec, Canada.

  • Inoue, N. (2001). The role of personal interpretation in mathematical problem solving: Enhancing the relevance of mathematical learning to everyday experience (Internal report). Teachers College, Columbia University.

  • Inoue, N. (2005). The realistic reasons behind unrealistic solutions: The role of interpretive activity in word problem solving. Learning and Instruction, 15, 69–83.

    Article  Google Scholar 

  • Jablonka, E., & Gellert, U. (2007). Mathematisation–Demathematisation. In U. Gellert, & E. Jablonka (Eds.), Mathematisation and demathematisation: Social, philosophical and educational ramifications (pp. 1–18). Rotterdam: Sense Publishers.

    Google Scholar 

  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary classrooms—Problems and chances. In W. Blum, P. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 99–108). New York: Springer.

    Chapter  Google Scholar 

  • Lave, J. (1992). Word problems: A microcosm of theories of learning. In P. Light, & G. Butterworth (Eds.), Context and cognition: Ways of learning and knowing (pp. 74–92). New York: Harvester Wheatsheaf.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2000). Modelling in mathematics and science. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 5.) Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., & Caylor, B. (2009). Differing conceptions of problem solving in mathematics education, science education, and professional schools. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 333–350). Rotterdam: Sense.

    Google Scholar 

  • Lesh, R., & Doerr, H.M. (Eds.) (2003). Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning, and teaching. Erlbaum: Mahwah.

    Google Scholar 

  • Maaß, K. (2004). Mathematisches Modellieren im Unterricht—Ergebnisse einer Empirischen Studie. Hildesheim: Franzbecker.

    Google Scholar 

  • Mason, L., & Scrivani, L. (2004). Enhancing students’ mathematical beliefs: An intervention study. Learning and Instruction, 14, 153–176.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Greer, B. (2001). Modelling with purpose: Mathematics as a critical tool. In B. Atweh, H. Forgasz, & B. Nebres (Eds.), Socio-cultural aspects in mathematics education (pp. 295–311). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Niss, M. (2001). Issues and problems of research on the teaching and learning of applications and modelling. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education. ICTMA 9: Applications in science and technology (pp. 72–89). Chichester: Horwood.

    Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • Palm, T. (2002). The realism of mathematical school tasks. Features and consequences. Unpublished doctoral dissertation, University of Umea, Sweden.

  • Prediger, S. (2009). Zur Bedeutung vielfältiger Theorien und wissenschaftlicher Praktiken in der Mathematikdidaktik am Beispiel von Schwierigkeiten mit Textaufgaben. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht (pp. 49–56) Münster: WTM. http://www.mathematik.uni-dortmund.de/~prediger/veroeff/09-BzMU-Theorien.pdf

    Google Scholar 

  • Radatz, H. (1983). Untersuchungen zum Lösen eingekleideter Aufgaben. Journal für Mathematik-Didaktik, 4(3), 205–217.

    Google Scholar 

  • Renkl, A. (1999). The gap between school and everyday knowledge in mathematics. Paper presented at the Eighth European Conference for Research on Learning and Instruction, Göteborg, Sweden, August 1999.

  • Reusser, K., & Stebler, R. (1997a). Every word problem has a solution: The suspension of reality and sense-making in the culture of school mathematics. Learning and Instruction, 7, 309–328.

    Article  Google Scholar 

  • Reusser, K., & Stebler, R. (1997b). Realistic mathematical modelling through the solving of performance tasks. Paper presented at the Seventh European Conference on Learning and Instruction, Athens, Greece, August 1997.

  • Roth, W.-M. (2009). On the problematic of word problems—language and the world we inhabit. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 55–69). Rotterdam: Sense.

    Google Scholar 

  • Säljö, R., Riesbeck, E., & Wyndhamn, J. (2009). Learning to model: Coordinating natural language and mathematical operations when solving word problems. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 177–194). Rotterdam: Sense.

    Google Scholar 

  • Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 311–343). Hillsdale: Erlbaum.

    Google Scholar 

  • Seeger, F., Voigt, J., & Waschescio, U. (Eds.), (1998). The culture of the mathematics classroom. Cambridge: Cambridge University Press.

    Google Scholar 

  • Selter, Ch. (1994). How old is the captain? Strategies, 5(1), 34–37.

    Google Scholar 

  • Selter, Ch. (2001). “1/2 Busse heißt: ein halbvoller Bus!”—Zu Vorgehensweisen von Grundschülern bei einer Textaufgabe mit Rest [“1/2 bus means a bus half-full!”—Solution strategies of elementary school children for DWR problems]. In C. Selter, & G. Walther (Eds.), Mathematik lernen und gesunder Menschenverstand (pp. 162–173). Leipzig: Klett.

    Google Scholar 

  • Skovsmose, O. (2005). Travelling through education: Uncertainty, mathematics, responsibility. Rotterdam: Sense.

    Google Scholar 

  • Swetz, F. J. (1987). Capitalism and arithmetic: The new math of the 15th century. La Salle: Open Court.

    Google Scholar 

  • Swetz, F. J. (2009). Word problems: Footprints from the history of mathematics. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 73–92). Rotterdam: Sense.

    Google Scholar 

  • Thorndike, E. L. (1922). The psychology of arithmetic. New York: Macmillan.

    Book  Google Scholar 

  • Toom, A. (1999). Word problems: Applications or mental manipulatives. For the Learning of Mathematics, 19(1), 36–38.

    Google Scholar 

  • Usiskin, Z. (2007). The arithmetic operations as mathematical models. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Applications and modelling in mathematics education (The 14th ICMI Study 14) (pp. 257–264). New York: Springer.

    Google Scholar 

  • Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modelling and problem solving in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28, 577–601.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modelling of school arithmetic word problems. Learning and Instruction, 4, 273–294.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., & Borghart, I. (1997). Pre-service teachers’ conceptions and beliefs about the role of real-world knowledge in mathematical modelling of school word problems. Learning and Instruction, 4, 339–359.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Design and evaluation of a learning environment for mathematical modelling and problem solving in upper elementary school children. Mathematical Thinking and Learning, 1, 195–229.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, B., & Greer, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Verschaffel, L., Greer, B., Van Dooren, W., & Mukhopadhyay, S. (Eds.), (2009). Words and worlds. Modelling verbal descriptions of situations. Rotterdam: Sense.

    Google Scholar 

  • Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning. Educational Studies in Mathematics, 34, 97–129.

    Article  Google Scholar 

  • Wyndhamn, J., & Säljö, R. (1997). Word problems and mathematical reasoning: A study of children’s mastery of reference and meaning in textual realities. Learning and Instruction, 7, 361–382.

    Article  Google Scholar 

  • **n, Z. (2009). Realistic problem solving in China. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 161–176). Rotterdam: Sense.

    Google Scholar 

  • **n, Z., & Zhang, L. (2009). Cognitive holding power, fluid intelligence, and mathematical achievement as predictors of children’s realistic problem solving. Learning and Individual Differences, 19(1), 124–129.

    Article  Google Scholar 

  • **n, Z., Lin, C., Zhang, L., & Yan, R. (2007). The performance of Chinese primary school students on realistic arithmetic word problems. Educational Psychology in Practice, 23, 145–159.

    Article  Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458–477.

    Article  Google Scholar 

  • Ye**, L., & Silver, E. (2000). Can younger students succeed where older students fail? An examination of third graders’ solutions of a division-with-remainder problem. Journal of Mathematical Behavior, 19, 233–246.

    Article  Google Scholar 

  • Yoshida, H., Verschaffel, L., & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning and Instruction, 7, 329–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Verschaffel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschaffel, L., Van Dooren, W., Greer, B. et al. Reconceptualising Word Problems as Exercises in Mathematical Modelling. J Math Didakt 31, 9–29 (2010). https://doi.org/10.1007/s13138-010-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13138-010-0007-x

Keywords

Mathematics Subject Classification (2000)

Navigation