Log in

Integrating selection, niche, and diversification into a hierarchical conceptual framework

  • Forum Paper
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Recently, new phylogenetic comparative methods have been proposed to test for the association of biological traits with diversification patterns, with species ecological “niche” being one of the most studied traits. In general, these methods implicitly assume natural selection acting at the species level, thus implying the mechanism of species selection. However, natural selection acting at the organismal level could also influence diversification patterns (i.e., effect macroevolution). Owing to our scarce knowledge on multi-level selection regarding niche as a trait, we propose a conceptual model to discuss and guide the test between species selection and effect macroevolution within a hierarchical framework. We first assume niche as an organismal as well as a species’ trait that interacts with the environment and results in species-level differential fitness. Then, we argue that niche heritability, a requirement for natural selection, can be assessed by its phylogenetic signal. Finally, we propose several predictions that can be tested in the future by disentangling both types of evolutionary processes (species selection or effect macroevolution). Our framework can have important implications for guiding analyses that aim to understand the hierarchical perspective of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo, M. S., Bolnick, D. S., & Layman, C. A. (2011). The ecological causes of individual specialization. Ecology Letters, 14, 948–958.

    Article  PubMed  Google Scholar 

  • Barraclough, T. G., & Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species‐level phylogenies. American Naturalist, 155, 419–434.

    CAS  PubMed  Google Scholar 

  • Birand, A., Vose, A., & Gavrilets, S. (2012). Patterns of species ranges, speciation, and extinction. The American Naturalist, 179, 1–21.

  • Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., et al. (2003). The ecology of individuals: incidence and implications of individual specialization. American Naturalist, 161, 1–28.

    Article  PubMed  Google Scholar 

  • Burin, G., Kissling, W.D., Guimarães Jr, P.R., Şekercioğlu, Ç.H., & Quental, T.B. (2016). Omnivory in birds is a macroevolutionary sink. Nature Communications, 7.

  • Cardillo, M. (2015). Geographic range shifts do not erase the historic signal of speciation in mammals. The American Naturalist, 185, 343–353.

  • Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letter, 12, 693–715.

    Article  Google Scholar 

  • Ceballos, G., & Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science, 296, 904–907.

    Article  CAS  PubMed  Google Scholar 

  • Chevin, L. M. (2016). Species selection and random drift in macroevolution. Evolution, 70, 513–525.

    Article  PubMed  Google Scholar 

  • Colwell, R. K., & Rangel, T. F. (2009). Hutchinson’s duality: the once and future niche. Proceedings of the National Academy of Science of the United States of America, 106, 19651–19658.

    Article  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species. London: J. Murray.

    Google Scholar 

  • DeAngelis, D. L., & Mooij, W. M. (2005). Individual-based modeling of ecological and evolutionary processes. Annual Review of Ecology, Evolution, and Systematics, 36, 147–168.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F. (2004). Macroecology and the hierarchical expansion of evolutionary theory. Global Ecology and Biogeography, 13, 1–5.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., Terribile, L. C., Da Cruz, M. J. R., & Vieira, L. C. G. (2010). Hidden pattern of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Global Ecology and Biogeography, 19, 916–926.

    Article  Google Scholar 

  • Diniz‐Filho, J. A. F., Alves, D. M. C. C., Villalobos, F., Sakamoto, M., Brusatte, S. L., & Bini, L. M. (2015). Phylogenetic eigenvectors and non‐stationarity in the evolution of theropod dinosaur skulls. Journal of Evolutionary Biology, 28, 1410–1416.

    Article  PubMed  Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in Paleobiology (pp. 82–115). San Francisco: Freeman, Cooper and Company.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712–726.

  • Gascuel, F., Ferrière, R., Aguilée, R., & Lambert, A. (2015). How ecology and landscape dynamics shape phylogenetic trees. Systematic Biology, 64, 590–607.

    Article  PubMed  Google Scholar 

  • Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., & Igić, B. (2010). Species selection maintains self-incompatibility. Science, 330, 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Gómez‐Rodríguez, C., Baselga, A., & Wiens, J. J. (2015). Is diversification rate related to climatic niche width? Global Ecology and Biogeography, 24, 383–395.

    Article  Google Scholar 

  • Gould, S. J. (1982). Darwinism and the expansion of evolutionary theory. Science, 216, 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. New Jersey: Princeton University Press.

    Book  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. New Jersey: Princeton University Press.

    Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427.

    Article  Google Scholar 

  • Hutchinson, G. E. (1978). An introduction to population ecology. Yale University Press.

  • Jablonski, D. (1987). Heritability at the species level: analyses of geographic ranges of Cretaceous Mollusks. Science, 238, 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Jablonski, D. (2007). Scale and hierarchy on macroevolution. Paleontology, 50, 87–109.

    Article  Google Scholar 

  • Jablonski, D. (2008). Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics, 39, 501–524.

    Article  Google Scholar 

  • Kozak, K. H., & Wiens, J. J. (2010). Accelerated rates of climatic‐niche evolution underlie rapid species diversification. Ecology Letters, 13, 1378–1389.

  • Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.

    Article  Google Scholar 

  • Lieberman, B. S., & Vrba, E. S. (2005). Stephen Jay Gould on species selection: 30 years of insight. Paleobiology, 31, 113–121.

    Article  Google Scholar 

  • Lloyd, E. A., & Gould, S. J. (1993). Species selection on variability. Proceedings of the National Academy of Science of the United States of America, 90, 595–599.

    Article  CAS  Google Scholar 

  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1007.

    Article  PubMed  Google Scholar 

  • Machac, A., Zrzavý, J., & Storch, D. (2011). Range size heritability in Carnivora is driven by geographic constraints. The American Naturalist, 177, 767–779.

  • Maddison, W. P., Midford, P. E., & Otto, S. P. (2007). Estimating a binary character's effect on speciation and extinction. Systematic biology, 56, 701–710.

  • Marquet, P. A., & Taper, M. L. (1998). On size and area: patterns of mammalian body size extremes across landmasses. Evolutionary Ecology, 12, 127–139.

    Article  Google Scholar 

  • Maurer, B. A. (1998). The evolution of body size in birds. I. Evidence for non-random diversification. Evolutionary Ecology, 12, 925–934.

    Article  Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • McInerny, G. J., & Etienne, R. S. (2012). Stitch the niche—a practical philosophy and visual schematic for the niche concept. Journal of Biogeography, 39, 2103–2111.

    Article  Google Scholar 

  • Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology letters, 17, 508–525.

  • Myers, C. E., & Saupe, E. E. (2013). A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology, 56, 1179–1198.

  • Ozinga, W. A., Colles, A., Bartish, I. V., Hennion, F., Hennekens, S. M., Pavoine, S., Poschlod, P., Hermant, M., Schaminée, J. H. J., & Prinzing, A. (2013). Specialists leave fewer descendants within a region than generalists. Global Ecology and Biogeography, 22, 213–222.

    Article  Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158.

  • Pennell, M. W., & Harmon, L. J. (2013). An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Science, 1289, 90–105.

    Article  Google Scholar 

  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação, 10, 102–107.

    Article  Google Scholar 

  • Price, S. A., Hopkins, S. S., Smith, K. K., & Roth, V. L. (2012). Tempo of trophic evolution and its impact on mammalian evolution. Proceedings of the National Academy of Science of the United States of America, 109, 7008–7012.

    Article  CAS  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2013). Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society of London B, 280, 1–10.

    Article  Google Scholar 

  • Quintero, I., & Wiens, J. J. (2013). What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Global Ecology and Biogeography, 22, 422–432.

    Article  Google Scholar 

  • Rabosky, D. L., & Goldberg, E. E. (2015). Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology, 64, 340–355.

    Article  PubMed  Google Scholar 

  • Rabosky, D. L., & McCune, A. R. (2009). Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution, 25, 68–74.

    Article  PubMed  Google Scholar 

  • Reed, D. H., Lowe, E. H., Briscoe, D. A., & Frankham, R. (2003). Inbreeding and extinction: effects of rate of inbreeding. Conservation genetics, 4, 405–410.

  • Reed, D. H. (2005). Relationship between population size and fitness. Conservation Biology, 19, 563–568.

  • Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591–601.

  • Rojas, D., Vale, Á., Ferrero, V., & Navarro, L. (2012). The role of frugivory on the diversification of bats in the Neotropics. Journal of Biogeography, 39, 1948–1960.

    Article  Google Scholar 

  • Rolland, J., & Salamin, N. (2016). Niche width impacts vertebrate diversification. Global Ecology and Biogeography. doi:10.1111/geb.12482.

  • Rosindell, J., Harmon, L. J., & Etienne, R. S. (2015). Unifying ecology and macroevolution with individual‐based theory. Ecology Letters, 18, 472–482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters, 16, 1104–1114.

    Article  PubMed  Google Scholar 

  • Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123.

    Article  PubMed  Google Scholar 

  • Soberón, J. (2014). Commentary on Ditch, Stitch and Pitch: the niche is here to stay. Journal of Biogeography, 41, 414–417.

    Article  Google Scholar 

  • Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Science of the United States of America, 106, 19644–19650.

    Article  Google Scholar 

  • Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10 (2005). doi:10.17161/bi.v2i0.4.

  • Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Science of the United States of America, 72, 646–650.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., & Araújo, M. B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347–357.

    Article  Google Scholar 

  • Title, P. O., & Burns, K. J. (2015). Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecology Letters, 18, 433–440.

    Article  PubMed  Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300.

  • Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology, 10, 146–171.

    Article  Google Scholar 

  • Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology, 12, 217–228.

    Article  Google Scholar 

  • Webb, T. J., & Gaston, K. J. (2003). On the heritability of geographic range sizes. The American Naturalist, 161, 553–566.

  • Wiens, J. J. (2008). Comentary on Losos (2008): niche conservatism déjà vu. Ecology Letters, 11, 995–1007.

    Article  Google Scholar 

  • Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324.

    Article  PubMed  Google Scholar 

  • Wilson, D. S., & Yoshimura, J. (1994). On the coexistence of specialists and generalists. American Naturalist, 144, 692–707.

    Article  Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, 28, 114.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are indebted to Thiago F. Rangel and Tiago B. Quental for thorough discussions and suggestions. We thank Michael Schmitt for grateful suggestions in the manuscript. FV thanks Mark E. Olson for introducing him to macroevolutionary theory and for endless discussions on theory and science. DMCCA was supported by a “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) doctoral fellowship. FV was supported by a “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) Science without Borders grant (BJT 301540/2014-4). JAFDF is continuously supported by a “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) productivity fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Mello Cunha Crescente Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, D.M.C.C., Diniz-Filho, J.A.F. & Villalobos, F. Integrating selection, niche, and diversification into a hierarchical conceptual framework. Org Divers Evol 17, 1–10 (2017). https://doi.org/10.1007/s13127-016-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0299-x

Keywords

Navigation