Log in

Hurdles to Clear Before Clinical Translation of Ischemic Postconditioning Against Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab. 2006;26(9):1114–21.

    PubMed  CAS  Google Scholar 

  2. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.

    PubMed  CAS  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab. 2009;29(5):873–85.

    Article  PubMed  CAS  Google Scholar 

  5. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, et al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol (Berl). 2005;109(3):237–46.

    Article  CAS  Google Scholar 

  6. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412.

    Article  PubMed  CAS  Google Scholar 

  7. Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26(5):248–54.

    Article  PubMed  CAS  Google Scholar 

  8. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–48.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao H. The protective effect of ischemic postconditioning against ischemic injury: from the heart to the brain. J Neuroimmune Pharmacol. 2007;2(4):313–8.

    Article  PubMed  Google Scholar 

  10. Zhao H, Ren C, Chen X, Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets. 2012;13(2):173–87.

    Article  PubMed  CAS  Google Scholar 

  11. Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, et al. 'Ischemic tolerance' phenomenon detected in various brain regions. Brain Res. 1991;561(2):203–11.

    Article  PubMed  CAS  Google Scholar 

  12. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528(1):21–4.

    Article  PubMed  CAS  Google Scholar 

  13. Walsh SR, Tang T, Sadat U, Dutka DP, Gaunt ME. Cardioprotection by remote ischaemic preconditioning. Br J Anaesth. 2007;99(5):611–6.

    Article  PubMed  CAS  Google Scholar 

  14. Walsh SR, Tang TY, Sadat U, Gaunt ME. Remote ischemic preconditioning in major vascular surgery. J Vasc Surg. 2009;49(1):240–3.

    Article  PubMed  Google Scholar 

  15. Kraemer R, Lorenzen J, Kabbani M, Herold C, Busche M, Vogt PM, et al. Acute effects of remote ischemic preconditioning on cutaneous microcirculation—a controlled prospective cohort study. BMC Surg. 2011;11:32.

    Article  PubMed  Google Scholar 

  16. Alreja G, Bugano D, Lotfi A. Effect of remote ischemic preconditioning on myocardial and renal injury: meta-analysis of randomized controlled trials. J Invasive Cardiol. 2012;24(2):42–8.

    PubMed  Google Scholar 

  17. Pilcher JM, Young P, Weatherall M, Rahman I, Bonser RS, Beasley RW. A systematic review and meta-analysis of the cardioprotective effects of remote ischaemic preconditioning in open cardiac surgery. J R Soc Med. 2012;105(10):436–45.

    Article  PubMed  Google Scholar 

  18. Hahn CD, Manlhiot C, Schmidt MR, Nielsen TT, Redington AN. Remote ischemic per-conditioning: a novel therapy for acute stroke? Stroke. 2012;42(10):2960–2.

    Article  Google Scholar 

  19. Kennelly J. Medical ethics: four principles, two decisions, two roles and no reasons. J Prim Health Care. 2011;3(2):170–4.

    PubMed  Google Scholar 

  20. Hoffmann GR. A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose-Response. 2009;7(1):1–51.

    Article  PubMed  CAS  Google Scholar 

  21. Van Wijk R, Wiegant FA. Postconditioning hormesis and the homeopathic Similia principle: molecular aspects. Hum Exp Toxicol. 2010;29(7):561–5.

    Article  PubMed  Google Scholar 

  22. Van Wijk R, Wiegant FA. Postconditioning hormesis and the similia principle. Front Biosci (Elite Ed). 2011;3:1128–38.

    Google Scholar 

  23. Wiegant F, Van Wijk R. The similia principle: results obtained in a cellular model system. Homeopathy. 2010;99(1):3–14.

    Article  PubMed  Google Scholar 

  24. Wiegant FA, Prins HA, Van Wijk R. Postconditioning hormesis put in perspective: an overview of experimental and clinical studies. Dose Response. 2011;9(2):209–24.

    Article  PubMed  CAS  Google Scholar 

  25. Calabrese EJ. Hormesis: toxicological foundations and role in aging research. Exp Gerontol. 2012. doi:10.1016/j.exger.2012.02.004

  26. Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep 2004; 5 Spec No:S37-40.

  27. Calabrese EJ. Hormesis and medicine. Br J Clin Pharmacol. 2008;66(5):594–617.

    PubMed  CAS  Google Scholar 

  28. Calabrese EJ. Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol. 2008;38(4):249–52.

    Article  PubMed  CAS  Google Scholar 

  29. Calabrese EJ. Hormesis and mixtures. Toxicol Appl Pharmacol. 2008;229(2):262–3. author reply 264.

    Article  PubMed  CAS  Google Scholar 

  30. Calabrese EJ, Baldwin LA. Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol. 2001;31(4–5):353–424.

    Article  PubMed  CAS  Google Scholar 

  31. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol. 2007;222(1):122–8.

    Article  PubMed  CAS  Google Scholar 

  32. Calabrese EJ. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem. 2008;27(7):1451–74.

    Article  PubMed  CAS  Google Scholar 

  33. Calabrese EJ, Baldwin LA. Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol. 2000;19(1):2–31.

    Article  PubMed  CAS  Google Scholar 

  34. Calabrese EJ, Baldwin LA. Defining hormesis. Hum Exp Toxicol. 2002;21(2):91–7.

    Article  PubMed  CAS  Google Scholar 

  35. Feng R, Li S, Li F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of tree shrews to thrombotic cerebral ischemia. Brain Res. 2011;1384:118–27.

    Article  PubMed  CAS  Google Scholar 

  36. Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, et al. The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 2008;105(3):943–55.

    Article  PubMed  CAS  Google Scholar 

  37. Yuan Y, Guo Q, Ye Z, **** X, Wang N, Song Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res. 2011;1367:85–93.

    Article  PubMed  CAS  Google Scholar 

  38. Scartabelli T, Gerace E, Landucci E, Moroni F, Pellegrini-Giampietro DE. Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway: a novel postconditioning strategy? Neuropharmacology. 2008;55(4):509–16.

    Article  PubMed  CAS  Google Scholar 

  39. Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M, et al. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res. 2010;1357:142–51.

    Article  PubMed  CAS  Google Scholar 

  40. Prasad SS, Russell M, Nowakowska M. Neuroprotection induced in vitro by ischemic preconditioning and postconditioning: modulation of apoptosis and PI3K-Akt pathways. J Mol Neurosci. 2011;43(3):428–42.

    Article  PubMed  CAS  Google Scholar 

  41. Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, **ong Z, et al. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab. 2008;28(2):232–41.

    Article  PubMed  CAS  Google Scholar 

  42. **ng B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, et al. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke. 2008;39(8):2362–9.

    Article  PubMed  CAS  Google Scholar 

  43. Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One. 2008;3(12):e3851.

    Article  PubMed  Google Scholar 

  44. Danielisova V, Gottlieb M, Nemethova M, Burda J. Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochem Res. 2008;33(6):1057–64.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou C, Tu J, Zhang Q, Lu D, Zhu Y, Zhang W, et al. Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3beta signaling. Neurochem Int 2011.

  46. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, et al. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke. 2009;40(10):3349–55.

    Article  PubMed  Google Scholar 

  47. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21(1):2–14.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao H, Asai S, Kanematsu K, Kunimatsu T, Kohno T, Ishikawa K. Real-time monitoring of the effects of normothermia and hypothermia on extracellular glutamate re-uptake in the rat following global brain ischemia. Neuroreport. 1997;8(9–10):2389–93.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao H, Asai S, Kohno T, Ishikawa K. Effects of brain temperature on CBF thresholds for extracellular glutamate release and reuptake in the striatum in a rat model of graded global ischemia. Neuroreport. 1998;9(14):3183–8.

    Article  PubMed  CAS  Google Scholar 

  50. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904–10.

    Article  PubMed  CAS  Google Scholar 

  51. Choi DW, Weiss JH, Koh JY, Christine CW, Kurth MC. Glutamate neurotoxicity, calcium, and zinc. Ann N Y Acad Sci. 1989;568:219–24.

    Article  PubMed  CAS  Google Scholar 

  52. Halls SB. The no-reflow phenomenon and dense fibrillary gliosis, cause of dark T2-weighted MR signal in stroke. AJNR Am J Neuroradiol. 1996;17(2):394–5.

    PubMed  CAS  Google Scholar 

  53. Ito U, Ohno K, Yamaguchi T, Tomita H, Inaba Y, Kashima M. Transient appearance of "no-reflow" phenomenon in Mongolian gerbils. Stroke. 1980;11(5):517–21.

    Article  PubMed  CAS  Google Scholar 

  54. Mercuri M, Ciuffetti G, Lombardini R, Neri C, Robinson M. Do leukocytes have a role in the cerebral no-reflow phenomenon? J Neurol Neurosurg Psychiatry. 1990;53(6):536.

    Article  PubMed  CAS  Google Scholar 

  55. Cao G, Clark RS, Pei W, Yin W, Zhang F, Sun FY, et al. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab. 2003;23(10):1137–50.

    Article  PubMed  CAS  Google Scholar 

  56. Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T, et al. Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci. 2001;21(13):4678–90.

    PubMed  CAS  Google Scholar 

  57. Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem. 2003;85(4):1026–36.

    Article  PubMed  CAS  Google Scholar 

  58. Gu L, **ong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43(7):1941–6.

    Article  PubMed  CAS  Google Scholar 

  59. Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol. 2009;256(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  60. Chapman KZ, Dale VQ, Denes A, Bennett G, Rothwell NJ, Allan SM, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29(11):1764–8.

    Article  PubMed  Google Scholar 

  61. Jordan J, Segura T, Brea D, Galindo MF, Castillo J. Inflammation as therapeutic objective in stroke. Curr Pharm Des. 2008;14(33):3549–64.

    Article  PubMed  CAS  Google Scholar 

  62. Jenkins WM, Merzenich MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 1987;71:249–66.

    Article  PubMed  CAS  Google Scholar 

  63. Seil FJ. Recovery and repair issues after stroke from the scientific perspective. Curr Opin Neurol. 1997;10(1):49–51.

    Article  PubMed  CAS  Google Scholar 

  64. Teasell R, Bayona N, Salter K, Hellings C, Bitensky J. Progress in clinical neurosciences: stroke recovery and rehabilitation. Can J Neurol Sci. 2006;33(4):357–64.

    PubMed  Google Scholar 

  65. Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008;63(6):720–8.

    Article  PubMed  Google Scholar 

  66. Zhang X, Zhang RL, Zhang ZG, Chopp M. Measurement of neuronal activity of individual neurons after stroke in the rat using a microwire electrode array. J Neurosci Methods. 2007;162(1–2):91–100.

    Article  PubMed  Google Scholar 

  67. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.

    Article  PubMed  CAS  Google Scholar 

  68. Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab. 2004;24(6):681–92.

    Article  PubMed  CAS  Google Scholar 

  69. Shimohata T, Zhao H, Steinberg GK. Hypothermia suppresses PKC activation in a model of permanent middle cerebral artery occlusion. Soc Neurosci Abs. 2005; 221:11, 2005.

    Google Scholar 

  70. Zhao H, Shimohata T, Wang JQ, Sun G, Schaal DW, Sapolsky RM, et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci. 2005;25(42):9794–806.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res. 2001;95(1–2):75–85.

    Article  PubMed  CAS  Google Scholar 

  72. Shimohata T, Zhao H, Steinberg GK. Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke. 2007;38(2):375–80.

    Article  PubMed  Google Scholar 

  73. Ritter L, Davidson L, Henry M, Davis-Gorman G, Morrison H, Frye JB, et al. Exaggerated neutrophil-mediated reperfusion injury after ischemic stroke in a rodent model of type 2 diabetes. Microcirculation. 2011;18(7):552–61.

    Article  PubMed  CAS  Google Scholar 

  74. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012;71(6):743–52.

    Article  PubMed  CAS  Google Scholar 

  75. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  PubMed  CAS  Google Scholar 

  76. Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab. 2009;29(5):873–85.

    Article  PubMed  CAS  Google Scholar 

  77. Liu C, Weaver J, Liu KJ. Rapid conditioning with oxygen oscillation: neuroprotection by intermittent normobaric hyperoxia after transient focal cerebral ischemia in rats. Stroke. 2012;43(1):220–6.

    Article  PubMed  CAS  Google Scholar 

  78. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke. 2012;43(10):2794–9.

    Article  PubMed  CAS  Google Scholar 

  79. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88–94.

    Article  PubMed  CAS  Google Scholar 

  80. Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD, et al. Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke. 2011;42(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  81. Adamczyk S, Robin E, Simerabet M, Kipnis E, Tavernier B, Vallet B, et al. Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth. 2010;104(2):191–200.

    Article  PubMed  CAS  Google Scholar 

  82. Koch S, Katsnelson M, Dong C, Perez-Pinzon M. Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke. 2011;42(5):1387–91.

    Article  PubMed  Google Scholar 

  83. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.

    Article  PubMed  Google Scholar 

  84. Manwani B, Liu F, Xu Y, Persky R, Li J, McCullough LD. Functional recovery in aging mice after experimental stroke. Brain Behav Immun. 2011;25(8):1689–700.

    Article  PubMed  Google Scholar 

  85. Murphy SJ, Traystman RJ, Hurn PD, Duckles SP. Progesterone exacerbates striatal stroke injury in progesterone-deficient female animals. Stroke. 2000;31(5):1173–8.

    Article  PubMed  CAS  Google Scholar 

  86. Hisham NF, Bayraktutan U. Epidemiology, pathophysiology, and treatment of hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis. 2012. doi:10.1016/j.jstrokecerebrovasdis.2012.05.001

  87. Alter M, Lai SM, Friday G, Singh V, Kumar VM, Sobel E. Stroke recurrence in diabetics. Does control of blood glucose reduce risk? Stroke. 1997;28(6):1153–7.

    Article  PubMed  CAS  Google Scholar 

  88. Warsch JR, Wright CB. Stroke: hyperlipidemia and cerebral small-vessel disease. Nat Rev Neurol. 2010;6(6):307–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Cindy H. Samos for manuscript assistance. This study was supported by AHA grant in aid and NIH grant 1R01NS 064136-01 (HZ).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H. Hurdles to Clear Before Clinical Translation of Ischemic Postconditioning Against Stroke. Transl. Stroke Res. 4, 63–70 (2013). https://doi.org/10.1007/s12975-012-0243-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0243-0

Keywords

Navigation