Log in

Treatment with the Iron Chelator, Deferoxamine Mesylate, Alters Serum Markers of Oxidative Stress in Stroke Patients

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The iron chelator, deferoxamine mesylate (DFO), has shown neuroprotective effects, mediated via suppression of iron-induced hydroxyl radical formation, in various animal models of ischemic and hemorrhagic stroke. Therefore, the objective of this study was to investigate whether DFO can exert similar actions in stroke patients, by examining the effects of treatment with DFO on biological markers of oxidative stress, namely serum total hydroperoxides and lipoperoxides and total radical trap** antioxidant capacity (TRAP), in stroke patients. We found that serum levels of peroxides were reduced, and TRAP levels increased after a 3-day treatment with DFO (500 mg). These findings provide a preliminary proof of concept that DFO can exert potential antioxidant neuroprotective effects in stroke patients. Future, larger-scale, randomized, and controlled studies to further evaluate the safety and efficacy of DFO in patients with stroke are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kondo Y, Asanuma M, Nishibayashi S, Iwata E, Ogawa N (1997) Late-onset lipid peroxidation and neuronal cell death following transient forebrain ischemia in rat brain. Brain Res 772(12):37–44

    Article  CAS  PubMed  Google Scholar 

  2. Ishimaru H, Ishikawa K, Ohe Y, Takahashi A, Tatemoto K, Maruyama Y (1996) Activation of iron handling system within the gerbil hippocampus after cerebral ischemia. Brain Res 726(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  3. Palmer C, Menzies S, Roberts R, Pavlick G, Connor J (1999) Changes in iron histochemistry after hypoxic–ischemic brain injury in the neonatal rat. J Neurosci Res 56:60–71

    Article  CAS  PubMed  Google Scholar 

  4. Huang FP, ** G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293

    Article  PubMed  Google Scholar 

  5. Koeppen AH, Dickson AC, McEvoy JA (1995) The cellular reactions to experimental intracerebral hemorrhage. J Neurol Sci 134(Supl):102–112

    Article  PubMed  Google Scholar 

  6. Bishop G, Robinson S (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia–ischemia and stroke. Brain Res 907(1–2):175–187

    Article  CAS  PubMed  Google Scholar 

  7. Winterbourn C (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82:969–974

    Article  PubMed  Google Scholar 

  8. Palmer C, Roberts R, Bero C (1994) Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 25:1039–1045

    CAS  PubMed  Google Scholar 

  9. Patt A, Horesh R, Berger M, Harken A, Repine E (1990) Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25:224–228

    Article  CAS  PubMed  Google Scholar 

  10. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–525

    Article  CAS  PubMed  Google Scholar 

  11. Soloniuk D, Perkins E, Wilson J (1992) Use of allopurinol and deferoxamine in cellular protection during ischemia. Surg Neurol 38(2):110–113

    Article  CAS  PubMed  Google Scholar 

  12. Regan RF, Rogers B (2003) Delayed treatment of hemoglobin neurotoxicity. J Neurotrauma 20:111–120

    Article  PubMed  Google Scholar 

  13. Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci 24(2–3):143–153

    Article  CAS  PubMed  Google Scholar 

  14. Zaman K, Ryu H, Hall D, O’Donovan K, Lin K, Miller M, Marquis J, Baraban J, Semenza G, Ratan R (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21waf1/cip1, and erythropoietin. J Neurosci 19(22):9821–9830

    CAS  PubMed  Google Scholar 

  15. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, Terranova R, Nicolaides A (1999) A simple test to monitor oxidative stress. Int Angiol 18(2):127–130

    CAS  PubMed  Google Scholar 

  16. Rice-Evans C, Miller N (1994) Total antioxidant status in plasma and body fluids. Meth Enzymol 234:279–475

    Article  CAS  PubMed  Google Scholar 

  17. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9(1):119–131

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, ** G (2002) Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res 953(1–2):45–52

    Article  CAS  PubMed  Google Scholar 

  19. Nanetti L, Taffi R, Vignini A, Moroni C, Raffaelli F, Bacchetti T, Silvestrini M, Provinciali L, Mazzanti L (2007) Reactive oxygen species plasmatic levels in ischemic stroke. Mol Cell Biochem 303(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  20. Aygul R, Demircan B, Erdem F, Ulvi H, Yildirim A, Demirbas F (2005) Plasma values of oxidants and antioxidants in acute brain hemorrhage: role of free radicals in the development of brain injury. Biol Trace Elem Res 108(1–3):43–52

    Article  CAS  PubMed  Google Scholar 

  21. Hershko C, Weatherall D (1988) Iron chelating therapy. Crit Rev Clin Lab Sci 26:303–346

    Article  CAS  PubMed  Google Scholar 

  22. Yokel RA, Lidums V, Ungerstedt U (1991) Aluminum mobilization by desferrioxamine assessed by microdialysis of the blood, liver and brain. Toxicology 66(3):313–324

    Article  CAS  PubMed  Google Scholar 

  23. Amaro S, Soy D, Obach V, Cervera A, Planas AM, Chamorro A (2007) A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke 38(7):2173–2175

    Article  CAS  PubMed  Google Scholar 

  24. Miller NJ, Johnston JD, Collis CS, Rice-Evans C (1997) Serum total antioxidant activity after myocardial infarction. Ann Clin Biochem 34(Pt 1):85–90

    PubMed  Google Scholar 

  25. Altamura C, Squitti R, Pasqualetti P, Gaudino C, Palazzo P, Tibuzzi F, Lupoi D, Cortesi M, Rossini PM, Vernieri F (2009) Ceruloplasmin/transferrin system is related to clinical status in acute stroke. Stroke 40(4):1282–1288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by a Pilot Clinical Research grant from the Harvard Center for Neurodegeneration and Repair (HCNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy Selim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selim, M. Treatment with the Iron Chelator, Deferoxamine Mesylate, Alters Serum Markers of Oxidative Stress in Stroke Patients. Transl. Stroke Res. 1, 35–39 (2010). https://doi.org/10.1007/s12975-009-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-009-0001-0

Keywords

Navigation