Log in

Fabrication and Investigation of Mechanical Behaviors of TiB2 Reinforced AMCs

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The automotive and aerospace industries are replacing monolithic conventional materials with composite materials for making variety of components. The aluminum metal matrix composites (AMCs) are a lightweight high perforce materials. The aluminum matrix composites (AMCs) have high strength to weight ratio as well as high corrosion resistance properties. Many automobile and aerospace components are made of AMCs. The stir casting fabrication technique is mostly used by researchers for the fabrication of aluminum matrix composites. In this research, Al 6063 matrix composites were fabricated by reinforcing varying percentages of TiB2 through the stir casting process. The wt% of TiB2 varied from 1 to 3% in Al 6063. The mechanical behavior of developed composites was analyzed. The result showed that tensile strength, hardness, and impact strength of composites were enhanced by 55.51%, 63.98%, and 28.13% respectively in comparison with the matrix material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kandpal B C, Kumar J, and Singh H, Mater Today Proc. 5 (2018) 5.

    Article  Google Scholar 

  2. Panwar N, and Chauhan A, Mater Today Proc 5 (2018) 5933.

    Article  CAS  Google Scholar 

  3. Elanchezhian C, Ramnath B V, Ramakrishnan G, Raghavendra K S, Muralidharan M, and Kishore V, Mater Today Proc 5 (2018) 1211.

    Article  CAS  Google Scholar 

  4. Gupta M K, and Singhal V, Mater Today Proc 56 (2022) 868.

    Article  Google Scholar 

  5. Dwivedi P, Maurya M, Maurya K, Srivastava K, Sharma S, and Saxena A, Evergreen Jt J Novel Carbon Resour Sci Green Asia Strategy 7 (2020) 15.

    CAS  Google Scholar 

  6. Bera T, and Acharya S K, Iran J Sci Technol Trans Mech Eng 43 (2019) 273.

    Article  Google Scholar 

  7. Mavhungu S T, Akinlabi E T, Onitiri M A, and Varachia F M, Procedia Manuf 7 (2017) 178.

    Article  Google Scholar 

  8. Selvakumar N, and Narayanasamy P, Tribol Trans 59 (2016) 733.

    Article  CAS  Google Scholar 

  9. Gupta M K, and Rakesh P K, Anusandhan AISECT Univ J 3 (2014) 558.

    Google Scholar 

  10. Mansoor M, and Shahid M, Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol 14 (2016) 215.

    Article  Google Scholar 

  11. Aybarc U, Yavuz H, Dispinar D, and Mehmet O S, Inter Metalcast 13 (2019) 190.

    Article  CAS  Google Scholar 

  12. Gupta M K, Gangil B, and Ranakoti L, Ind Eng J 13 (2020) 1.

    Google Scholar 

  13. Özer G, Acar S, Kısasöz A, and Güler K A, Gazi Univ J Sci 34 (2021) 1096.

    Article  Google Scholar 

  14. Gupta M K, Carbon Lett 30 (2020) 399.

    Article  Google Scholar 

  15. Ergün R K, and Adin H, Iran J Sci Technol Trans Mech Eng (2022). https://doi.org/10.1007/s40997-022-00543-8

    Article  Google Scholar 

  16. Kumar N M S, Shashank T N, Dheeraj N U, Dhruthi A, Kordijazi P K, and Rohatgi M S, Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00831-8

    Article  Google Scholar 

  17. Bolat Ç, Bekar C, and Göksenli A, Gazi Univ J Sci 35 (1), (2022) 184.

    Article  Google Scholar 

  18. Miqdad M, and Syahrial A Z, Evergreen Jt J Novel Carbon Resour Sci Green Asia Strategy 9 (2022) 531.

    CAS  Google Scholar 

  19. Shukla M, Dhakad S K, Agarwal P, and Pradhan M K, Mater Today Proc 5 (2018) 5830.

    Article  CAS  Google Scholar 

  20. Kumar S D, Ravichandran M, and Meignanamoorthy M, Mater Today Proc 5 (2018) 19844.

    Article  Google Scholar 

  21. Han D S, Jones H, and Atkinson H V, J Mater Sci 28 (1993) 2654.

    Article  CAS  Google Scholar 

  22. Dwivedi S P, Maurya N K, and Maurya M, Evergreen Jt J Novel Carbon Resour Sci Green Asia Strategy 6 (2019) 285.

    CAS  Google Scholar 

  23. Sahu P S, and Banchhor R, Int Res J Eng Technol 3 (2016) 123.

    Google Scholar 

  24. Gupta M K, Singhal V, and Rajput N S, Evergreen Jt J Novel Carbon Resour Sci Green Asia Strategy 9 (2022) 682. https://doi.org/10.5109/4843099

    Article  CAS  Google Scholar 

  25. Surappa M K, Sadhana 28 (2003) 319.

    Article  CAS  Google Scholar 

  26. Dwivedi S P, Maurya M, and Chauhan S S, Evergreen Jt J Novel Carbon Resour Sci Green Asia Strategy 8 (2021) 318.

    CAS  Google Scholar 

  27. Hu Q, Zhao H, and Li F, Mater Manuf Proces 31 (2016) 1292.

    Article  CAS  Google Scholar 

  28. Vanarotti M, Shrishail P, Sridhar B R, Venkateswarlu K, and Kori S, Procedia Mater Sci 5 (2014) 873.

    Article  CAS  Google Scholar 

  29. Christy T V, Murugan N, and Kumar S, J Min Mater Charact Eng 9 (2010) 57.

    Google Scholar 

  30. Ravichandran M V, Prasad R K, and Dwarakadasa E S, J Mater Sci Lett 11 (1992) 452.

    Article  CAS  Google Scholar 

  31. Lu L, Lai M O, and Chen F L, Acta Mater 45 (1997) 4297.

    Article  CAS  Google Scholar 

  32. Sharma P, Paliwal K, Garg R K, Sharma S, and Khanduja D, J Asian Ceram Soc 5 (2017) 42.

    Article  Google Scholar 

  33. Al-Salihi H A, Mahmood A A, and Alalkawi H J, Nanocomposites 5 (2019) 67.

    Article  CAS  Google Scholar 

  34. Kanth U R, Rao P S, and Krishna M G, J Mater Res Technol 8 (2019) 737.

    Article  CAS  Google Scholar 

  35. Kumar G V, Pramod R, Sekhar C G, Kumar G P, and Bhanumurthy T, Heliyon 5 (2019) e02858.

    Article  Google Scholar 

  36. Hanizam H, Salleh M S, Omar M Z, and Sulong A B, J Mater Res Technol 8 (2019) 2223.

    Article  CAS  Google Scholar 

  37. Sharma V K, and Kumar V, J Mater Res Technol 8 (2019) 1971.

    Article  CAS  Google Scholar 

  38. Bisadi H, and Abasi A, Am J Mater Sci 1 (2011) 67.

    Article  Google Scholar 

  39. Anandakrishnan V, and Mahamani A, Int J Adv Manuf Technol 55 (2011) 65.

    Article  Google Scholar 

  40. Gurusamy P, Prabu S B, and Paskaramoorthy R, Mater Manuf Process 30 (2015) 367.

    Article  CAS  Google Scholar 

  41. Suthar J, and Patel K, Heliyon 4 (2018) e00988.

    Article  Google Scholar 

  42. Gupta M K, Ranakoti L, and Rakesh P K, Automotive Tribology, Springer, Singapore (2019), p 131. https://doi.org/10.1007/978-981-15-0434-1_8

    Book  Google Scholar 

  43. Ayar V S, and Sutaria M P, Inter Metalcast 15 (2021) 1047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Singh Rajput.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.K., Rajput, N.S., Kulshreshtha, S. et al. Fabrication and Investigation of Mechanical Behaviors of TiB2 Reinforced AMCs. Trans Indian Inst Met 77, 563–570 (2024). https://doi.org/10.1007/s12666-023-03131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03131-9

Keywords

Navigation