Log in

Statistical Analysis and Mathematical Modeling of Dry Sliding Wear Parameters of 2024 Aluminium Hybrid Composites Reinforced with Fly Ash and SiC Particles

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present studies are focused to analyze mathematically the dry sliding wear of 2024 aluminium alloy reinforced with fly ash (FA) and silicon carbide (SiC) particles with weight percentages of 5, 10 and 15. Both FA and SiC reinforcements are combined equally in weight proportion. Dry sliding wear values are computed using the pin-on-disc wear testing machine. The process parameters or factors like applied load, the weight percentage of FA and SiC, sliding time are identified, which are going to affect the wear of the sample under investigation. The experiments are designed based on Taguchi L27 orthogonal array. Mathematical/statistical methods such as Taguchi’s signal-to-noise ratio and Analysis of Variance (ANOVA) are the best tools, which are used to find out the influence of factors/parameters on the wear of composite. The analysis of experimental data using such methods is done using MINITAB 18 software considering smaller is better as a quality characteristic. Multiple linear regression and response surface methodology (RSM) mathematical models are used to develop the relation between wear with process factors. The results obtained from multiple linear regression model and RSM are compared. 2D contour plots are drawn for evaluation of wear at different set of process conditions. The wear mechanisms are studied using SEM pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amar P, Satapathy A, Mahapatra S S, and Dash R R, Mater Des 30 (2009) 57.

    Article  Google Scholar 

  2. Nair S V, Tien J K, and Bates R C, Int Mater Rev 30 (1985) 275.

    Article  Google Scholar 

  3. Gurcan A B, and Baker T N, Wear 188 (1995) 185.

    Article  Google Scholar 

  4. Chen A L, Arai Y, and Tsuchida E, Compos B 36 (2005) 319.

    Article  Google Scholar 

  5. Hassan A M, Alrashdan A, Hayajneh M, and Mayyas A T, Tribol Int 42 (2009) 1230.

    Article  Google Scholar 

  6. Yang Z, and Lu Z, Compos B Eng 44 (2013) 453.

    Article  Google Scholar 

  7. Ramachandra M, and Radhakrishna K, International Symposium of Research Students on Materials Science and Engineering; December 20–22, Chennai, India (2004).

  8. Singla M, Compos 8 (2009) 813.

    Google Scholar 

  9. Uyyuru R K, Surappa M K, and Brusethaug S, Wear 260 (2006) 1248.

    Article  Google Scholar 

  10. Dhanabalakrishnan K P, Int J Eng Sci Res 2 (2012) 1954.

  11. Kumar R, Dhiman S, Mater Des 50 (2013) 351.

    Article  Google Scholar 

  12. Carvalho O, Buciumeanu M, Madeira S, Tribol Int 90 (2015) 148.

    Article  Google Scholar 

  13. Suresha S, Sridhara B K, Mater Des 31 (2010) 4470.

    Article  Google Scholar 

  14. Mirinda G, Buciumeanu M, Maderia S, Carvalho O, Soares D, Silva F S, Compos B 74 (2015) 153.

    Article  Google Scholar 

  15. Bobić B, Mitrović S, Babić M, and Bobić I, Trib Ind 32 (2010) 3.

    Google Scholar 

  16. David Raja Selvam J, Robinson Smart D S, and Dinaharan I, Energy Procedia 34 (2013) 637.

    Article  Google Scholar 

  17. Suresha S, and Sridhara B K, Mater Des 31 (2010) 1804.

    Article  Google Scholar 

  18. Bodunrin M O, Alaneme K K, and Chown L H, J Mater Res Technol 4 (2015) 434.

    Article  Google Scholar 

  19. Venkat Prasad S, and Subramanian R, Ind Lubr Tribol 65 (2013) 399.

    Article  Google Scholar 

  20. Moorthy A, Natarajan D N, Sivakumar R, and Manojkumar M, Int J Mod Eng Res IJMER 2 (2012) 1224.

    Google Scholar 

  21. Uthayakumar M, Thirumalai kumaran S, and Aravindan S, Adv Tribol 2013 (2013) 365602. https://doi.org/10.1155/2013/365602.

    Article  Google Scholar 

  22. Ramachandra M, and Radhakrishna K, Wear 262 (2007) 1450.

    Article  Google Scholar 

  23. Shivaprakash Y M, Sreenivasa Prasad K V, and Basavaraj Y, Int J Curr Eng Technol 3 (2013) 911 (ISSN 2277–4106).

    Google Scholar 

  24. Palanisamy S, Ramanathan S, and Rangaraj R, Adv Mech Eng 5 (2013) 658085. https://doi.org/10.1155/2013/658085.

    Article  Google Scholar 

  25. Sudarshan, and Surappa M K, Mater Sci Eng A 480 (2008) 117. https://doi.org/10.1016/j.msea.2007.06.068.

    Article  Google Scholar 

  26. Babu Rao J, Venkata Rao D, Narasimha Murthy I, and Bhargava NRMR, Int J Compos Mater 46 (2011) 1393.

    Google Scholar 

  27. Vivekananthan M, and Senthamarai K, CARE J Appl Res (2011) (ISSN 2321-4090).

  28. Ramachandra M, and Radhakrishna K, J. Mater. Sci 40 (2005) 5989.

    Article  Google Scholar 

  29. Vijaya Bhaskar K, Subba Rao B, Sundarrajan S, and Ravindra K, SSRG Int J Mech Eng (ICEEMST’17)—Special Issue (2017) 32 ISSN: 2348–8360.

  30. Escalera-Lozano R, Gutiérrez C A, and Pech-Canul M A, Mater Charact 58 (2007) 953.

    Article  Google Scholar 

  31. Vijaya Bhaskar K, Sundarrajan S, Gopi Krishna M, and Ravindra K Elsevier Mater Today Proc 4 (2017). https://doi.org/10.1016/j.matpr.2017.07.072.

  32. Vijaya Bhaskar K, and Kommineni R, Mater Res Express (2017). https://doi.org/10.1088/2053-1591/aa8a3e.

  33. Umanath K, Palinikumar K, and Selvamani S T, Compos B 53 (2013) 159.

    Article  Google Scholar 

  34. Kiran T S, Prasanna Kumar M, Basavarajappa S, and Viswanatha B M, Mater Des 63 (2014) 294.

    Article  Google Scholar 

  35. Baradeswaran A, Elayaperumal A, and Franklin Issac R, Proc Eng 64 (2013) 973.

    Article  Google Scholar 

  36. Ravindran P, Manisekhar K, Narayanasamy P, Selvakumar N, and Narayanasamy R, Mater Des 39(2012) 42.

    Article  Google Scholar 

  37. Mathan Kumar N, Senthil Kumaran S, and Kumaraswamidhas L A, Alexandria Eng J 55 (2016) 19.

    Article  Google Scholar 

  38. Shanmughasundaram Palanisamy P, Acta Metall Sin 22 (2016) 24.

    Google Scholar 

  39. Rao R, and Das S, Mater Des 31 (2010) 1200.

    Article  Google Scholar 

  40. Stochowiak G, Batchelor A W, A Text Book on Engineering Tribology, Elsevier Inc., Amsterdam (2005).

    Google Scholar 

  41. Emori N, Oike M, Sasada T, Wear 97, (1984), 291

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Mechanical Engineering, Acharya Nagarjuna University, Nambur, Guntur, Andhra Pradesh, India for providing necessary support in conducting experiments; and also the authors express their thanks to Centre for Materials Characterization and Testing, International advanced research centre for Power Metallurgy and New Materials (ARCI), Hyderabad for their support in SEM–EDX studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Bhaskar Kurapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Srinivasan Sundarrajan: Former Director, NIT, Trichy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurapati, V.B., Kommineni, R. & Sundarrajan, S. Statistical Analysis and Mathematical Modeling of Dry Sliding Wear Parameters of 2024 Aluminium Hybrid Composites Reinforced with Fly Ash and SiC Particles. Trans Indian Inst Met 71, 1809–1825 (2018). https://doi.org/10.1007/s12666-018-1322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1322-z

Keywords

Navigation