Log in

Environmental pollution induced by heavy metal(loid)s from pig farming

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The development of intensive and large-scale livestock farming, such as pig husbandry, is significantly increasing the amount of manure globally. Mineral additives are commonly used in animal feed, and heavy metal(loid)s (HMs) are introduced to the feed via incomplete purification processes of those mineral additives, which leads to inevitable environmental pollution by HMs in conjunction with manure production. When these toxic-metal-containing manures are used as fertilizer, the HMs accumulate in soils and crops, which further causes potential risks to human health and the ecological environment. In this review, the focus is on seven HMs that are related to human activities or frequently contained in animal feed, including copper, zinc, cadmium, chromium, lead, mercury, and arsenic. The toxicities of these HMs and the elimination methods to reduce the HM toxicity of pig manure when it is added to soil, i.e., liquid–solid separation, adsorption, bioleaching, and composting, are summarized. The ultimate aim of this review is to outline the systematic pollution management strategies for HMs from pig farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HMs:

Heavy metal(loid)s

dm:

Dry matter

PM:

Pig manure

References

  • Acharya UR, Mishra M, Patro J et al (2008) Effect of vitamins C and E on spermatogenesis in mice exposed to cadmium. Reprod Toxicol 25:84–88

    Article  Google Scholar 

  • Aldrich AP, Kistler D, Sigg L (2002) Speciation of Cu and Zn in drainage water from agricultural soils. Environ Sci Technol 36:4824–4830

    Article  Google Scholar 

  • Al-Saleh I, Coskun S, Mashhour A et al (2008) Exposure to heavy metals (lead, cadmium and mercury) and its effect on the outcome of in vitro fertilization treatment. Int J Hyg Environ Health 211:560–579

    Article  Google Scholar 

  • Anderson RA, Cheng N, Bryden NA et al (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46:1786–1791

    Article  Google Scholar 

  • Angenard G, Muczynski V, Coffigny H et al (2010) Cadmium increases human fetal germ cell apoptosis. Environ Health Perspect 118:331–337

    Article  Google Scholar 

  • Armstrong TA, Cook DR, Ward MM et al (2004) Effect of dietary copper source (cupric citrate and cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. J Anim Sci 82:1234–1240

    Article  Google Scholar 

  • Azarbad H, Niklinska M, van Gestel CA et al (2013) Microbial community structure and functioning along metal pollution gradients. Environ Toxicol Chem SETAC 32:1992–2002

    Article  Google Scholar 

  • Bednorz C, Oelgeschlager K, Kinnemann B et al (2013) The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int J Med Microbiol (IJMM) 303:396–403

    Article  Google Scholar 

  • Bernao A, Meseguer I, Aguilar MV et al (2004) Effect of different doses of chromium picolinate on protein metabolism in infant rats. J Trace Elem Med Biol 18:33–39

    Article  Google Scholar 

  • Bhattacharyya MH (1983) Bioavailability of orally administered cadmium and lead to the mother, fetus, and neonate during pregnancy and lactation: an overview. Sci Total Environ 28:327–342

    Article  Google Scholar 

  • Brus DJ, Li Z, Song J et al (2009) Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, P.R. China. J Environ Qual 38:1126–1136

    Article  Google Scholar 

  • Bustaffa E, Stoccoro A, Bianchi F et al (2014) Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 88:1043–1067

    Article  Google Scholar 

  • Cang L, Wang YJ, Zhou DM et al (2004) Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J Environ Sci (China) 16:371–374

    Google Scholar 

  • Cefalu WT, Wang ZQ, Zhang XH et al (2002) Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr 132:1107–1114

    Article  Google Scholar 

  • Chen SY, Lin JG (2004) Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration. Chemosphere 54:283–289

    Article  Google Scholar 

  • Chen HM, Zheng CR, Tu C et al (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  Google Scholar 

  • Chen TB, Zheng YM, Chen H et al (2004) Background concentrations of soil heavy metals in Bei**g. Huan **g ke xue = Huan**g kexue/[bian ji, Zhongguo ke xue yuan huan **g ke xue wei yuan hui “Huan **g ke xue” bian ji wei yuan hui] 25:117–122

  • Chen T, Liu X, Li X et al (2009) Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environ Pollut 157:1003–1010

    Article  Google Scholar 

  • Chen YX, Huang XD, Han ZY et al (2010) Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78:1177–1181

    Article  Google Scholar 

  • Chen S, Yue Q, Gao B et al (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour Technol 113:114–120

    Article  Google Scholar 

  • Ciraj AM, Mohammed M, Bhat KG et al (1999) Copper resistance & its correlation to multiple drug resistance in Salmonella typhi isolates from south Karnataka. Indian J Med Res 110:181

    Google Scholar 

  • Cooksey C (2012) Health concerns of heavy metals and metalloids. Sci Prog 95:73–88

    Article  Google Scholar 

  • Croue JP, Benedetti MF, Violleau D et al (2003) Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environ Sci Technol 37:328–336

    Article  Google Scholar 

  • Cui E, Wu Y, Jiao Y et al (2017) The behavior of antibiotic resistance genes and arsenic influenced by biochar during different manure composting. Environ Sci Pollut Res 24:14484–14490

    Article  Google Scholar 

  • Dao TH, Schwartz RC (2010) Mineralizable phosphorus, nitrogen, and carbon relationships in dairy manure at various carbon-to-phosphorus ratios. Bioresour Technol 101:3567–3574

    Article  Google Scholar 

  • Das S, Santra A, Lahiri S et al (2005) Implications of oxidative stress and hepatic cytokine (TNF-alpha and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 204:18–26

    Article  Google Scholar 

  • Diez Lazaro J, Kidd PS, Monterroso MC (2006) A phytogeochemical study of the Tras-os-Montes Region (NE Portugal): possible species for plant-based soil remediation technologies. Sci Total Environ 354:265–277

    Article  Google Scholar 

  • Dj ML, Dixon F, Klim E et al (2015) An investigation into exposure of pigs to lead from contaminated zinc oxide in 2007–2008. Aust Vet J 93:72–78

    Article  Google Scholar 

  • Dórea JG (2006) Fish meal in animal feed and human exposure to persistent bioaccumulative and toxic substances. J Food Prot 69:2777

    Article  Google Scholar 

  • Du J, Cheng SY, Hou WX et al (2013) Effectiveness of maifanite in reducing the detrimental effects of cadmium on growth performance, cadmium residue, hematological parameters, serum biochemistry, and the activities of antioxidant enzymes in pigs. Biol Trace Elem Res 155:49–55

    Article  Google Scholar 

  • Fang D, Zhou LX (2007) Enhanced cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and brettanomyces B65 in an air-lift reactor. Chemosphere 69:303–310

    Article  Google Scholar 

  • Fard RM, Heuzenroeder MW, Barton MD (2011) Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet Microbiol 148:276–282

    Article  Google Scholar 

  • Fellet G, Marchiol L, Delle Vedove G et al (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    Article  Google Scholar 

  • Gabhane J, William SP, Bidyadhar R et al (2012) Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour Technol 114:382–388

    Article  Google Scholar 

  • Ghishan FK (1984) Transport of electrolytes, water, and glucose in zinc deficiency. J Pediatr Gastroenterol Nutr 3:608–612

    Article  Google Scholar 

  • Guerra-Rodriguez E, Alonso J, Melgar MJ et al (2006) Evaluation of heavy metal contents in co-composts of poultry manure with barley wastes or chestnut burr/leaf litter. Chemosphere 65:1801–1805

    Article  Google Scholar 

  • Guo X, Gu J, Gao H et al (2012) Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour Technol 108:140–148

    Article  Google Scholar 

  • Hallen IP, Jorhem L, Oskarsson A (1995) Placental and lactational transfer of lead in rats: a study on the lactational process and effects on offspring. Arch Toxicol 69:596–602

    Article  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344S–1349S

    Article  Google Scholar 

  • Hao WF, Qi MW, **a DZ et al (2006) The estimation of the production amount of animal manure and its environmental effect in China. China Environ Sci 26:614–617

    Google Scholar 

  • Hill GM, Cromwell GL, Crenshaw TD et al (2000) Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J Anim Sci 78:1010–1016

    Article  Google Scholar 

  • Himanen M, Hanninen K (2009) Effect of commercial mineral-based additives on composting and compost quality. Waste Manag 29:2265–2273

    Article  Google Scholar 

  • Hindmarsh JT, Mccurdy RF (1986) Clinical and environmental aspects of arsenic toxicity. Crit Rev Clin Lab Sci 23:315–347

    Article  Google Scholar 

  • Hobbelen PH, Koolhaas JE, van Gestel CA (2006) Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ Pollut 144:639–646

    Article  Google Scholar 

  • Huff J, Lunn RM, Waalkes MP et al (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202–212

    Article  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  Google Scholar 

  • Islam S, Rahman MM, Duan L et al (2017) Variation in arsenic bioavailability in rice genotypes using swine model: an animal study. Sci Total Environ 599–600:324

    Article  Google Scholar 

  • Ito T, Katayama Y, Asada K et al (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323–1336

    Article  Google Scholar 

  • Ji X, Shen Q, Liu F et al (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235–236:178–185

    Article  Google Scholar 

  • Jiang TY, Jiang J, Xu RK et al (2012) Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249–256

    Article  Google Scholar 

  • Jorhem L, Slorach S, Sundström B et al (1991) Lead, cadmium, arsenic and mercury in meat, liver and kidney of Swedish pigs and cattle in 1984–88. Food Addit Contam 8:201–211

    Article  Google Scholar 

  • Jusoh A, Hartini WJ, Ali N et al (2011) Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour Technol 102:5312–5318

    Article  Google Scholar 

  • Kegley EB, Spears JW, Brown TT Jr (1996) Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride. J Dairy Sci 79:1278–1283

    Article  Google Scholar 

  • Kim BG, Lindemann MD, Cromwell GL (2009) The effects of dietary chromium(III) picolinate on growth performance, blood measurements, and respiratory rate in pigs kept in high and low ambient temperature. J Anim Sci 87:1695–1704

    Article  Google Scholar 

  • Kinoshita H, Sohma Y, Ohtake F et al (2013) Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res Microbiol 164:701–709

    Article  Google Scholar 

  • Kwon SI, Jang YA, Owens G et al (2014) Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic waste treatments. Environ Geochem Health 36:409–419

    Article  Google Scholar 

  • Lacorte LM, Seiva FR, Rinaldi JC et al (2013) Caffeine reduces cadmium accumulation in the organism and enhances the levels of antioxidant protein expression in the epididymis. Reprod Toxicol 35:137–143

    Article  Google Scholar 

  • Li YX, **ong X, Lin CY et al (2010a) Cadmium in animal production and its potential hazard on Bei**g and Fuxin farmlands. J Hazard Mater 177:475–480

    Article  Google Scholar 

  • Li L, Xu Z, Wu J et al (2010b) Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour Technol 101:3430–3436

    Article  Google Scholar 

  • Li R, Wang JJ, Zhang Z et al (2012) Nutrient transformations during composting of pig manure with bentonite. Bioresour Technol 121:362–368

    Article  Google Scholar 

  • Li Y, Yang X, Chen Z et al (2015) Comparative toxicity of lead (pb(2+)), copper (cu(2+)), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip. Biomicrofluidics 9:024105

    Article  Google Scholar 

  • Liang YG, Li XJ, Zhang J et al (2017) Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure. Environ Sci Pollut Res Int 24:12328–12337

    Article  Google Scholar 

  • Lindemann MD, Wood CM, Harper AF et al (1995) Dietary chromium picolinate additions improve gain: feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows. J Anim Sci 73:457–465

    Article  Google Scholar 

  • Liu X, Zhang W, Hu Y et al (2015) Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere 119:273–281

    Article  Google Scholar 

  • Lu D, Wang L, Yan B et al (2014) Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste Manag 34:1529–1536

    Article  Google Scholar 

  • Lu XM, Li WF, Li CB (2017) Characterization and quantification of antibiotic resistance genes in manure of piglets and adult pigs fed on different diets. Environ Pollut 229:102

    Article  Google Scholar 

  • Mahrosh U, Kleiven M, Meland S et al (2014) Toxicity of road deicing salt (NaCl) and copper (Cu) to fertilization and early developmental stages of Atlantic salmon (Salmo salar). J Hazard Mater 280:331–339

    Article  Google Scholar 

  • Marcato CE, Pinelli E, Pouech P et al (2008) Particle size and metal distributions in anaerobically digested pig slurry. Bioresour Technol 99:2340–2348

    Article  Google Scholar 

  • Marhuenda-Egea FC, Martinez-Sabater E, Jorda J et al (2007) Dissolved organic matter fractions formed during composting of winery and distillery residues: evaluation of the process by fluorescence excitation–emission matrix. Chemosphere 68:301–309

    Article  Google Scholar 

  • Meng J, Wang L, Zhong L et al (2017) Contrasting effects of composting and pyrolysis on bioavailability and speciation of cu and Zn in pig manure. Chemosphere 180:93–99

    Article  Google Scholar 

  • Mertens J, Vervaeke P, De Schrijver A et al (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 326:209–215

    Article  Google Scholar 

  • Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633

    Google Scholar 

  • Morera MT, Echeverria JC, Mazkiaran C et al (2001) Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ Pollut 113:135–144

    Article  Google Scholar 

  • Namihira D, Saldivar L, Pustilnik N et al (1993) Lead in human blood and milk from nursing women living near a smelter in mexico city. J Toxicol Environ Health 38:225–232

    Article  Google Scholar 

  • Nampoothiri LP, Gupta S (2006) Simultaneous effect of lead and cadmium on granulosa cells: a cellular model for ovarian toxicity. Reprod Toxicol 21:179–185

    Article  Google Scholar 

  • Nies DH (1992) Czcr and czcd, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110

    Article  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  • Nies D, Mergeay M, Friedrich B et al (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    Article  Google Scholar 

  • Nies DH, Nies A, Chu L et al (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  Google Scholar 

  • Nikolic R, Krstic N, Jovanovic J et al (2015) Monitoring the toxic effects of Pb, Cd and Cu on hematological parameters of wistar rats and potential protective role of lipoic acid and glutathione. Toxicol Ind Health 31:239–246

    Article  Google Scholar 

  • Obuekwe IS, Semple KT (2013) Impact of Zn and Cu on the development of phenanthrene catabolism in soil. Environ Monit Assess 185:10039–10047

    Article  Google Scholar 

  • Pages D, Sanchez L, Conrod S et al (2007) Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity. Environ Microbiol 9:2820–2835

    Article  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90:2343–2353

    Article  Google Scholar 

  • Popovic O, Hjorth M, Jensen LS (2012) Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry. Environ Technol 33:2119–2131

    Article  Google Scholar 

  • Priya PN, Pillai A, Gupta S (2004) Effect of simultaneous exposure to lead and cadmium on gonadotropin binding and steroidogenesis on granulosa cells: an in vitro study. Indian J Exp Biol 42:143–148

    Google Scholar 

  • Pugach S, Clarkson T (2009) Prenatal mercury exposure and postnatal outcome: clinical case report and analysis. Clin Toxicol (Phila) 47:366–370

    Article  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  Google Scholar 

  • Rana SV (2014) Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res 160:1–14

    Article  Google Scholar 

  • Rehman A, Sohail Anjum M, Hasnain S (2010) Cadmium biosorption by yeast, Candida tropicalis CBL-1, isolated from industrial wastewater. J Gen Appl Microbiol 56:359–368

    Article  Google Scholar 

  • Renugadevi J, Prabu SM (2010) Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 62:171–181

    Article  Google Scholar 

  • Rossbach S, Kukuk ML, Wilson TL et al (2000) Cadmium-regulated gene fusions in Pseudomonas fluorescens. Environ Microbiol 2:373–382

    Article  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  Google Scholar 

  • Schut S, Zauner S, Hampel G et al (2011) Biosorption of copper by wine-relevant lactobacilli. Int J Food Microbiol 145:126–131

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4:272–275

    Article  Google Scholar 

  • Sevilla JB, Nakajima F, Kasuga I (2014) Comparison of aquatic and dietary exposure of heavy metals Cd, Cu, and Zn to benthic ostracod heterocypris incongruens. Environ Toxicol Chem SETAC 33:1624–1630

    Article  Google Scholar 

  • Sfakianakis DG, Renieri E, Kentouri M et al (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255

    Article  Google Scholar 

  • Shelton JL, Payne RL, Johnston SL et al (2003) Effect of chromium propionate on growth, carcass traits, pork quality, and plasma metabolites in growing-finishing pigs. J Anim Sci 81:2515–2524

    Article  Google Scholar 

  • Sheppard SC, Grant CA, Sheppard MI et al (2009) Risk indicator for agricultural inputs of trace elements to Canadian soils. J Environ Qual 38:919–932

    Article  Google Scholar 

  • Shim J, Lim JM, Shea PJ et al (2014) Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. J Hazard Mater 272:129–136

    Article  Google Scholar 

  • Stuckey JW, Neaman A, Ravella R et al (2008) Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils. Environ Sci Technol 42:9197–9202

    Article  Google Scholar 

  • Su Y (2006) Research of countermeasures on waste treating of intensive livestock and poultry farms in China. Chin J Eco-Agric 2:15–18

    Google Scholar 

  • Suksabye P, Thiravetyan P, Nakbanpote W et al (2007) Chromium removal from electroplating wastewater by coir pith. J Hazard Mater 141:637–644

    Article  Google Scholar 

  • Suran J, Prisc M, Rasic D et al (2013) Malondialdehyde and heavy metal concentrations in tissues of wild boar (Sus scrofa L.) from central Croatia. J Environ Sci Health Part B 48:147–152

    Article  Google Scholar 

  • Suzuki K, Waki M, Yasuda T et al (2010) Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater. Bioresour Technol 101:9399–9404

    Article  Google Scholar 

  • Tip** E, Lofts S (2015) Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ Toxicol Chem SETAC 34:788–798

    Article  Google Scholar 

  • Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147

    Article  Google Scholar 

  • Uauy R, Maass A, Araya M (2008) Estimating risk from copper excess in human populations. Am J Clin Nutr 88:867S–871S

    Google Scholar 

  • Uchimiya M, Bannon DI, Wartelle LH (2012) Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J Agric Food Chem 60:1798–1809

    Article  Google Scholar 

  • Unterbrunner R, Puschenreiter M, Sommer P et al (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114

    Article  Google Scholar 

  • Uthus EO (1992) Evidence for arsenic essentiality. Environ Geochem Health 14:55–58

    Article  Google Scholar 

  • Vega L, Styblo M, Patterson R et al (2001) Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol 172:225

    Article  Google Scholar 

  • Villasenor J, Rodriguez L, Fernandez FJ (2011) Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour Technol 102:1447–1454

    Article  Google Scholar 

  • Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533:107–120

    Article  Google Scholar 

  • Wang MQ, Wang C, Li H et al (2012) Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biol Trace Elem Res 149:197–203

    Article  Google Scholar 

  • Wang W, Zhang W, Wang X et al (2017a) Tracing heavy metals in ‘swine manure-maggot-chicken’ production chain. Sci Rep 7:8417

    Article  Google Scholar 

  • Wang Q, Awasthi MK, Ren X et al (2017b) Effect of calcium bentonite on Zn and Cu mobility and their accumulation in vegetable growth in soil amended with compost during consecutive planting. Environ Sci Pollut Res 24:1–10

    Article  Google Scholar 

  • Warren S, Patel S, Kapron CM (2000) The effect of vitamin E exposure on cadmium toxicity in mouse embryo cells in vitro. Toxicology 142:119–126

    Article  Google Scholar 

  • Xu D, Zhao Y, Sun K et al (2014) Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Chemosphere 111:320–326

    Article  Google Scholar 

  • Yang W, Wang J, Zhu X et al (2012) High lever dietary copper promote ghrelin gene expression in the fundic gland of growing pigs. Biol Trace Elem Res 150:154–157

    Article  Google Scholar 

  • Yasmin KK, Ali B, Cui X et al (2017) Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. Chinensis L.) on phytoavoidation of cd to reduce potential dietary toxicity. Ecotoxicol Environ Saf 141:129

    Article  Google Scholar 

  • Zhang B, Guo Y (2009) Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr 102:687–693

    Article  Google Scholar 

  • Zhang W, Pang F, Huang Y et al (2008) Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicol Lett 182:18–23

    Article  Google Scholar 

  • Zhang F, Li Y, **ong X et al (2012) Effect of composting on dissolved organic matter in animal manure and its binding with Cu. Sci World J 2012:289896

    Google Scholar 

  • Zhang Y, Luo W, Jia J et al (2014) Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils. Environ Monit Assess 186:5297–5306

    Article  Google Scholar 

  • Zhou J, Zhou L, Liu F et al (2012) Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus. Environ Technol 33:2553–2560

    Article  Google Scholar 

  • Zhou J, Zheng G, Zhou L et al (2013) The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching. Environ Technol 34:35–43

    Article  Google Scholar 

  • Zhou Y, Xu YB, Xu JX et al (2015) Combined toxic effects of heavy metals and antibiotics on a Pseudomonas fluorescens strain ZY2 isolated from swine wastewater. Int J Mol Sci 16:2839–2850

    Article  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ et al (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  Google Scholar 

  • Zhu B, Liu L, Li DL et al (2014a) Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd. Ecotoxicol Environ Saf 104:269–277

    Article  Google Scholar 

  • Zhu W, Yao W, Zhang Z et al (2014b) Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw. Environ Sci Pollut Res Int 21:12684–12692

    Article  Google Scholar 

  • Zornoza R, Faz A, Carmona DM et al (2013) Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste. Chemosphere 90:2606–2613

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by Science and Technology Service Network Initiative (KFJ-SW-STS-173), the plant germplasm resources innovation project of strategic biological resources service network plan from the Chinese academy of sciences (ZSZC-011), the Project of Technology in Feeding of Rice with Excess Cd Content from the Hunan government (2015-038), and the National “948” Project from the Ministry of Agriculture of China (No. 2015Z74).

Author information

Authors and Affiliations

Authors

Contributions

ZF, QD, JY, JL and YH collected the relevant literature; ZF and HZ wrote the paper; ZF, FG, RH and TL had primary responsibility for the final content. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zemeng Feng or Tiejun Li.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zhu, H., Deng, Q. et al. Environmental pollution induced by heavy metal(loid)s from pig farming. Environ Earth Sci 77, 103 (2018). https://doi.org/10.1007/s12665-018-7300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7300-2

Keywords

Navigation