Log in

Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awareness of groundwater level. In this study, we have applied artificial neural networks (ANN) and autoregressive integrated moving average (ARIMA) models for groundwater level forecasting to 4 months ahead in Shiraz basin, southwestern Iran. Time series analysis was conducted according to the Box–Jenkins method. Meanwhile, gamma and M-test were considered for determining the optimal input combination and length of training and testing data in the ANN model. The results indicated that performance of multilayer perceptron neural network (4, 14, 1) and ARIMA (2, 1, 2) is satisfactory in the groundwater level forecasting for one month ahead. The performance comparison shows that the ARIMA model performs appreciably better than the ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abghari H, Rezaeianzadeh M, Singh VP, Moradzadeh Azar F (2010) Comparison of monthly rainfall prediction using linear stochastic-base models in Gharalar rain gauge station Iran. Geophys Res Abstr 12, EGU2010-2652-1

  • Adhikary SK, Rahman MM, Gupta AD (2012) A stochastic modelling technique for predicting groundwater table fluctuations with time series analysis. Int J Appl Sci Eng Res 1(2):238–249

    Google Scholar 

  • Aflatooni M, Mardaneh M (2011) Time series analysis of ground water table fluctuations due to temperature and rainfall change in Shiraz plain. Int J Water Resour Environ Eng 3(9):176–188

    Google Scholar 

  • Agalbjörn S, Končar N, Jones AJ (1997) A note on the gamma test. Neural Comput Appl 53:131–133

    Google Scholar 

  • Akaike H (1974) A look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  • Banerjee P, Prasad RK, Singh VS (2009) Forecasting of groundwater level in hard rock region using artificial neural network. Environ Geol 58:1239–1246

    Article  Google Scholar 

  • Behzad M, Asghari K, Coppola EA (2010) Comparative study of SVMs and ANNs in aquifer water level prediction. J Comput Civ Eng 24(5):408–413

    Article  Google Scholar 

  • Bidwell VJ (2005) Realistic forecasting of groundwater level, based on the Eigenstructure of aquifer dynamics. Math Comput Simul 69:12–20

    Article  Google Scholar 

  • Boochabun K, Tych W, Chappell NA, Carling PA, Lorsirirat K, PaObsaeng S (2004) Statistical modelling of rainfall and river flow in Thailand. J Geol Soc India 64:503–515

    Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Chattopadhyay S, Chattopadhyay G (2010) Univariate modeling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN. CR Geosci 342:100–107

    Article  Google Scholar 

  • Chattopadhyay S, Jhajharia D, Chattopadhyay G (2011) Univariate modelling of monthly maximum temperature time series over northeast India: neural network versus Yule–Walker equation based approach. Meteorol Appl 18:70–82

    Article  Google Scholar 

  • Choubin B, Khalighi-Sigaroodi S, Malekian A, Ahmad S, Attarod P (2014) Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J Mt Sci 11(6):1593–1605. doi:10.1007/s11629-014-3020-6

    Article  Google Scholar 

  • Choubin B, Khalighi-Sigaroodi S, Malekian A, Kişi Ö (2016a) Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. Hydrol Sci J 61(6):1001–1009. doi:10.1080/02626667.2014.966721

    Article  Google Scholar 

  • Choubin B, Malekian A, Golshan M (2016b) Application of several data-driven techniques to predict a standardized precipitation index. Atmósfera 29(2):121–128. doi:10.20937/ATM.2016.29.02.02

    Article  Google Scholar 

  • Choubin B, Malekian A, Samadi S, Khalighi‐Sigaroodi S, Sajedi-Hosseini F (2017a) An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorol Appl. doi:10.1002/met.1635

    Google Scholar 

  • Choubin B, Solaimani K, Habibnejad Roshan M, Malekian A (2017b) Watershed classification using remote sensing indices: a fuzzy c–means clustering approach. J Mt Sci. doi:10.1007/s11629-017-4357-4

    Google Scholar 

  • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896

    Article  Google Scholar 

  • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309(1–4):229–240

    Article  Google Scholar 

  • Dash NB, Panda SN, Ramesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19(8):1253–1261

    Article  Google Scholar 

  • Dickey DA, Fuller WA (1979) Estimators for autoregressive time series with a unit root. J Am Stat Assoc 74:427–431

    Google Scholar 

  • Durrant PJ (2001) WinGamma: a non-linear data analysis and modeling tool with applications to flood prediction. Ph.D. thesis, Department of Computer Science, Cardiff University, Wales, UK

  • Evans D, Jones AJ (2002) A proof of the gamma test. Proc R Soc Ser A 458:2759–2799

    Article  Google Scholar 

  • Han D, Yan W, Moghaddamnia A (2010) Uncertainty with the gamma test for model input data selection. In: WCCI 2010 IEEE world congress on computational intelligence. July 18–23, 2010—CCIB, Barcelona, Spain, pp 1–5

  • Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184

    Google Scholar 

  • Hsu KL, Gupta HV, Sorooshian S (1955) Artificial neural network modeling of rainfall-runoff process. Water Resour Res 31(10):2517–2530

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  • Jajarmizadeh M, Kakaei Lafdani E, Harun S, Ahmadi A (2015) Application of SVM and SWAT models for monthly streamflow prediction, a case study in South of Iran. KSCE J Civ Eng 19(1):345–357

    Article  Google Scholar 

  • Kim T, Valdés J (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8(6):319–328

    Article  Google Scholar 

  • Končar N (1997) Optimisation methodologies for direct inverse neurocontrol. Ph.D. thesis, Deptartment of Computing, Imperial College of Science, Technology and Medicine, University of London, London

  • Kakaei Lafdani E, Nia AM, Ahmadi A (2013) Daily suspended sediment load prediction using artificial neural networks and support vector machines. J Hydrol 478:50–62

    Article  Google Scholar 

  • Lee SI, Lee SK, Hamm SY (2009) A model for groundwater time-series from the well field of riverbank filtration. J Korea Water Resour Assoc 42:673–680

    Article  Google Scholar 

  • Lin GF, Chen LH (2005) Time series forecasting by combining the radial basis function network and the self-organizing map. Hydrol Process 19(10):1925–1937

    Article  Google Scholar 

  • Lu WX, Zhao Y, Chu HB, Yang LL (2013) The analysis of groundwater levels influenced by dual factors in western Jilin Province by using time series analysis method. Appl Water Sci 4(3):251–260

    Article  Google Scholar 

  • Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009a) Evaporation estimation using artificial neural networks and adaptive neurofuzzy inference system techniques. Adv Water Resour 32(1):88–97

    Article  Google Scholar 

  • Moghaddamnia A, Ghafari M, Piri J, Han D (2008) Evaporation estimation using support vector machines technique. Proc World Acad Sci Eng Technol 33:14–22

    Google Scholar 

  • Moghaddamnia A, Ghafari M, Piri J, Han D (2009b) Evaporation estimation using support vector machines. Int J Eng Phys Sci 3(3):134–142

    Google Scholar 

  • Moghaddamnia A, Remesan R, Hassanpour Kashani M, Mohammadi M, Han D, Piri J (2009c) Comparison of LLR, MLP, Elman, NNARX and ANFIS models with a case study in solar radiation estimation. J Atmos Solar Terr Phys 71:975–982

    Article  Google Scholar 

  • Narayanan P, Basistha A, Sarkar S, Kamna S (2013) Trend analysis and ARIMA modelling of pre-monsoon rainfall data for western India. CR Geosci 345(1):22–27

    Article  Google Scholar 

  • Nayak PC, Rao YRS, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20(1):77–90

    Article  Google Scholar 

  • Noori R, Karbassi AR, Sabahi MS (2010) Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste predicting. J Environ Manag 91:767–771

    Article  Google Scholar 

  • Nourani V, Ejlali RG, Alami MT (2011) Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environ Eng Sci 28(3):217–228

    Article  Google Scholar 

  • Nourani V, Mogaddam AA, Nadiri AO (2008) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22(26):5054–5066

    Article  Google Scholar 

  • Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346

    Article  Google Scholar 

  • Piri J, Amin S, Moghaddamnia A, Keshavarz A, Han D, Remesan R (2009) Daily pan evaporation modeling in a hot and dry climate. J Hydrol Eng 14(8):803–811

    Article  Google Scholar 

  • Rashidi S, Vafakhah M, Kakaei Lafdani E, Javadi MR (2016) Evaluating the support vector machine for suspended sediment load forecasting based on gamma test. Arab J Geosci 9(11):583

    Article  Google Scholar 

  • Remesan R, Shamim MA, Han D (2008) Model data selection using Gamma test for daily solar radiation estimation. Hydrol Process 22(21):4301–4309

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Sethi RR, Kumar A, Sharma SP, Verma HC (2010) Prediction of water table depth in a hard rock basin by using artificial neural network. Int J Water Resour Environ Eng 2(4):95–102

    Google Scholar 

  • Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20(2):971–977

    Article  Google Scholar 

  • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2):419–432

    Article  Google Scholar 

  • Sigaroodi SK, Chen Q, Ebrahimi S, Nazari A, Choobin B (2014) Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran. Hydrol Earth Syst Sci 18(5):1995–2006. doi:10.5194/hess-18-1995-2014

    Article  Google Scholar 

  • Singh S (2005) Implementation of the Gamma test in MATLAB using a fast near algorithm in C++. Dissertation, Department of Computer Science, Cardiff University

  • Stefansson A, Koncar N, Jones AJ (1997) A note on the gamma test. Neural Comput Appl 5:131–133

    Article  Google Scholar 

  • Trichakis IC, Nikolos IK, Karatzas GP (2009) Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer’s response. Hydrol Process 23(20):2956–2969

    Article  Google Scholar 

  • Tsanis IK, Coulibaly P, Daliakopoulos IN (2008) Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. J Hydroinf 10(4):317–330

    Article  Google Scholar 

  • Tsui APM, Jones AJ, De Oliveira AG (2002) The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Comput Appl 10(4):318–329

    Article  Google Scholar 

  • Voudouris K (2002) Time series analysis using ARIMA models of the groundwater table in Patras industrial area aquifer system NW Peloponnese, Greece. Terra Nostra (Bonn) 3:335–340

    Google Scholar 

  • Yang ZP, Lu WX, Long YQ, Li P (2009) Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China. J Arid Environ 73:487–492

    Article  Google Scholar 

  • Yurekli K, Simsek H, Cemek B, Karaman S (2007) Simulating climatic variables by using stochastic approach. Build Environ 42:3493–3499

    Article  Google Scholar 

  • Zakaria S, Al-Ansari N, Knutsson S, Al-Badrany T (2012) ARIMA Models for weekly rainfall in the semi-arid Sinjar District at Iraq. J Earth Sci Geotech Eng 2(3):25–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Malekian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choubin, B., Malekian, A. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environ Earth Sci 76, 538 (2017). https://doi.org/10.1007/s12665-017-6870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6870-8

Keywords

Navigation