Log in

Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding factors that drive urban growth is essential to cellular automata (CA) based urban modeling. Multicollinearity among correlated factors may cause negative effects when building CA transition rules, leading to a decrease in simulation accuracy. We use a nonparametric generalized additive model (GAM) to evaluate these relationships through flexible smooth functions to capture the dynamics of urban growth. A GAM-based CA (termed GAM-CA) model was then developed to simulate the rapid urban growth in Shanghai, China from 2000 to 2015. GAM highlights the significance of each candidate factor driving urban growth during the past 15 years. Compared to logistic regression, the GAM-CA transition rules fitted the observed data better and yielded improved overall accuracy and hence more realistic urban growth patterns. The new CA model has great potential for capturing key driving factors to simulate dynamic urban growth, and can predict future scenarios under various spatial constraints and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed SJ, Bramley G, Verburg PH (2014) Key driving factors influencing urban growth: spatial-statistical modelling with CLUE-s. In: Dewan A, Corner R (eds) Dhaka megacity. Springer, Berlin, pp 123–145

    Chapter  Google Scholar 

  • Akaike H (2011) Akaike’s information criterion. In: Lovric M (ed) International encyclopedia of statistical science. Springer, Berlin, 25p

    Chapter  Google Scholar 

  • Al-Ahmadi K, See L, Heppenstall A et al (2009) Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecol Complex 6(2):80–101

    Article  Google Scholar 

  • Almeida C, Gleriani J, Castejon EF et al (2008) Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int J Geogr Inf Sci 22(9):943–963

    Article  Google Scholar 

  • Al-shalabi M, Billa L, Pradhan B et al (2013) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437

    Article  Google Scholar 

  • Azari M, Tayyebi A, Helbich M et al (2016) Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GISci Remote Sens 53(2):183–205

    Article  Google Scholar 

  • Batty M, **e Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23(3):205–233

    Article  Google Scholar 

  • Besussi E, Cecchini A, Rinaldi E (1998) The diffused city of the Italian North-East: identification of urban dynamics using cellular automata urban models. Comput Environ Urban Syst 22(5):497–523

    Article  Google Scholar 

  • Brown DG, Goovaerts P, Burnicki A et al (2002) Stochastic simulation of land-cover change using geostatistics and generalized additive models. Photogramm Eng Remote Sens 68(10):1051–1061

    Google Scholar 

  • Chen J, Chen J, Liao A et al (2015) Global land cover map** at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens 103:7–27

    Article  Google Scholar 

  • Clarke KC, Gaydos LJ (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci 12(7):699–714

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1996) Methods and techniques for rigorous calibration of a cellular automaton model of urban growth. In: Third international conference/workshop on integrating GIS and environmental modeling, Santa Fe, New Mexico, 1996. Citeseer

  • Dang AN, Kawasaki A (2016) A review of methodological integration in land-use change models. Int J Agric Environ Inf Syst (IJAEIS) 7(2):1–25

    Article  Google Scholar 

  • Dimitriou E, Moussoulis E (2011) Land use change scenarios and associated groundwater impacts in a protected peri-urban area. Environ Earth Sci 64(2):471–482

    Article  Google Scholar 

  • Ebrahimipour A, Saadat M, Farshchin A (2016) Prediction of urban growth through cellular automata-Markov chain. Bulletin de la Société Royale des Sciences de Liège 85:824–839

    Google Scholar 

  • Fang S, Gertner GZ, Sun Z et al (2005) The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc urban Plan 73(4):294–306

    Article  Google Scholar 

  • Feng Y (2017) Modeling dynamic urban land use change with geographical cellular automata and generalized pattern search optimized rules. Int J Geogr Inf Sci 31:1198–1219

    Google Scholar 

  • Feng Y, Liu Y (2012) An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation. In: Yeh AGO, Shi W, Leung Y, Zhou C (eds) Advances in spatial data handling and GIS. Springer, Berlin, pp 27–38

    Chapter  Google Scholar 

  • Feng Y, Liu Y (2013a) A cellular automata model based on nonlinear kernel principal component analysis for urban growth simulation. Environ Plan 40(1):116–134

    Google Scholar 

  • Feng Y, Liu Y (2013b) A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. Int J Geogr Inf Sci 27(3):449–466

    Article  Google Scholar 

  • Feng Y, Liu Y (2016) Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China. Environ Monit Assess 188(9):1–15

    Article  Google Scholar 

  • Feng Y, Liu Y, Han Z (2011a) Land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes. Chin J Appl Ecol 22(4):957–963

    Google Scholar 

  • Feng Y, Liu Y, Tong X et al (2011b) Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landsc Urban Plan 102(3):188–196

    Article  Google Scholar 

  • Feng Y, Liu Y, Batty M (2016) Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu-Songjiang area of Shanghai, China. Stoch Environ Res Risk Assess 30(5):1387–1400

    Article  Google Scholar 

  • García AM, Santé I, Crecente R et al (2011) An analysis of the effect of the stochastic component of urban cellular automata models. Comput Environ Urban Syst 35(4):289–296

    Article  Google Scholar 

  • Gharbia SS, Alfatah SA, Gill L et al (2016) Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Model Earth Syst Environ 2(3):151

    Article  Google Scholar 

  • Gong W, Yuan L, Fan W et al (2015) Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. Int J Appl Earth Obs Geoinf 34:207–216

    Article  Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157(2):89–100

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. CRC Press, Boca Raton

    Google Scholar 

  • He YQ, Ai B, Yao Y et al (2015) Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images. Int J Appl Earth Obs Geoinf 38:164–174

    Article  Google Scholar 

  • Hosmer DW Jr, Lemeshow S (2004) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Huang J, Pontius RG, Li Q et al (2012) Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl Geogr 34:371–384

    Article  Google Scholar 

  • Keshtkar H, Voigt W (2016) A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ 2(1):1–13

    Article  Google Scholar 

  • Kocabas V, Dragicevic S (2006) Assessing cellular automata model behaviour using a sensitivity analysis approach. Comput Environ Urban Syst 30(6):921–953

    Article  Google Scholar 

  • Kocabas V, Dragicevic S (2007) Enhancing a GIS cellular automata model of land use change: Bayesian networks, influence diagrams and causality. Trans GIS 11(5):681–702

    Article  Google Scholar 

  • Ku C-A (2016) Incorporating spatial regression model into cellular automata for simulating land use change. Appl Geogr 69:1–9

    Article  Google Scholar 

  • Larsen K (2016) GAM: The predictive modeling silver bullet. http://multithreaded.stitchfix.com/assets/files/gam.pdf. Accessed 28 Sept 2016

  • Leathwick J, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199(2):188–196

    Article  Google Scholar 

  • Li X, Yeh AG-O (2002a) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–343

    Article  Google Scholar 

  • Li X, Yeh AG-O (2002b) Urban simulation using principal components analysis and cellular automata for land-use planning. Photogramm Eng Remote Sens 68(4):341–351

    Google Scholar 

  • Li X, Lin J, Chen Y et al (2013a) Calibrating cellular automata based on landscape metrics by using genetic algorithms. Int J Geogr Inf Sci 27(3):594–613

    Article  Google Scholar 

  • Li X, Liu Y, Liu X et al (2013b) Knowledge transfer and adaptation for land-use simulation with a logistic cellular automaton. Int J Geogr Inf Sci 27(10):1829–1848

    Article  Google Scholar 

  • Liao J, Tang LN, Shao GF et al (2014) A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. Int J Geogr Inf Sci 28(4):720–738

    Article  Google Scholar 

  • Liu Y, Feng Y (2012) A logistic based cellular automata model for continuous urban growth simulation: a case study of the Gold Coast City, Australia. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Berlin, pp 643–662

    Chapter  Google Scholar 

  • Liu Y, Feng Y (2016) Simulating the impact of economic and environmental strategies on future urban growth scenarios in Ningbo, China. Sustainability-Basel 8(10):1045

    Article  Google Scholar 

  • Liu X, Li X, Shi X et al (2010) Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int J Geogr Inf Sci 24(5):783–802

    Article  Google Scholar 

  • Liu X, Ma L, Li X et al (2014a) Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int J Geogr Inf Sci 28(1):148–163

    Article  Google Scholar 

  • Liu Y, Feng Y, Pontius RG (2014b) Spatially-explicit simulation of urban growth through self-adaptive genetic algorithm and cellular automata modelling. Land 3(3):719–738

    Article  Google Scholar 

  • Liu YL, He Q, Tan R et al (2016) Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China. Appl Geogr 66:109–118

    Article  Google Scholar 

  • Mao X, Meng J, ** land use ecological security patterns in semi-arid areas: a case study of Ordos, Inner Mongolia, China. Environ Earth Sci 70(1):269–279

    Article  Google Scholar 

  • Ménard A, Marceau DJ (2005) Exploration of spatial scale sensitivity in geographic cellular automata. Environ Plan 32(5):693–714

    Article  Google Scholar 

  • Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149

    Article  Google Scholar 

  • Mustafa A, Saadi I, Cools M et al (2014) Measuring the effect of stochastic perturbation component in cellular automata urban growth model. Procedia Environ Sci 22:156–168

    Article  Google Scholar 

  • Ou J, Liu X, Li X et al (2016) Quantifying spatiotemporal dynamics of urban growth modes in metropolitan cities of China: Bei**g, Shanghai, Tian**, and Guangzhou. J Urban Plan Dev 143:04016023

    Article  Google Scholar 

  • Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0

  • Santé I, García AM, Miranda D et al (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96(2):108–122

    Article  Google Scholar 

  • Stevens D, Dragicevic S, Rothley K (2007) iCity: a GIS–CA modelling tool for urban planning and decision making. Environ Model Softw 22(6):761–773

    Article  Google Scholar 

  • Su S, Li D, **ao R et al (2014) Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol Indic 45:332–339

    Article  Google Scholar 

  • Sun Q, Wu Z, Tan J (2012) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65(6):1687–1694

    Article  Google Scholar 

  • Tan KC, Lim HS, MatJafri MZ et al (2010) Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ Earth Sci 60(7):1509–1521

    Article  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ et al (2004) Land use change modelling: current practice and research priorities. GeoJournal 61(4):309–324

    Article  Google Scholar 

  • Wang F, Hasbani JG, Wang X, Marceau DJ (2011) Identifying dominant factors for the calibration of a land-use cellular automata model using Rough Set Theory. Comput Environ Urban Syst 35(2):116–125

    Article  Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plann A 25(8):1175–1199

    Article  Google Scholar 

  • White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modelling. Environ Plann B 24:235–246

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. CRC Press, Boca Raton

    Google Scholar 

  • Wootton JT (2001) Local interactions predict large-scale pattern in empirically derived cellular automata. Nature 413(6858):841–844

    Article  Google Scholar 

  • Wu F (2002) Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci 16(8):795–818

    Article  Google Scholar 

  • Wu F, Xu J, Yeh AG-O (2006) Urban development in post-reform China: state, market, and space. Routledge, London

    Google Scholar 

  • Yin J, Yin Z, Zhong H et al (2011) Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ Monit Assess 177(1–4):609–621

    Article  Google Scholar 

  • Zhang H, Z-f Qi, X-y Ye et al (2013) Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl Geogr 44:121–133

    Article  Google Scholar 

  • Zhao S, Da L, Tang Z et al (2006) Ecological consequences of rapid urban expansion: Shanghai, China. Front Ecol Environ 4(7):341–346

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Project 41406146) and Natural Science Foundation of Shanghai Municipality (Project 13ZR1419300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjiu Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Tong, X. Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth. Environ Earth Sci 76, 496 (2017). https://doi.org/10.1007/s12665-017-6828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6828-x

Keywords

Navigation