Log in

The significance of Gobi desert surfaces for dust emissions in China: an experimental study

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A series of experiments to determine the direct emission of dust-sized particles from Gobi surfaces by clean wind (wind without sand), and the potential for aeolian abrasion of Gobi surfaces and beds of gravel and mobile sand to produce fine (<100 μm) and dust-sized (<10 μm, PM10) particles under sand-laden winds were conducted. Parent material was obtained from Gobi areas of the Ala Shan Plateau, the region with high dust emissions in arid China. The fine particles produced by aeolian processes were collected using sand traps and sieved the captured materials to exclude particles >100 μm in diameter and then PM10 by sedimentation was acquired. The Gobi surface provided most of the emitted fine particles during the initial dust emission processes, but subsequently, release of the clay coatings of particles by abrasion becomes the dominant source of fine materials. Under sand-laden winds, PM10 production rates produced by aeolian abrasion of Gobi surfaces ranged between 0.002 and 0.244% of blown materials. After removal of sand, silt, or clay with low resistance to erosion from the Gobi surfaces by the wind, the PM10 production rates caused by aeolian abrasion were similar to those from gravel and sand beds. The results also indicated that after the dust-sized particles with low resistance to erosion were removed, the production of dust-sized particles was unrelated to wind velocity. Under aeolian processes, Gobi deserts in this region therefore play a major role in dust emissions from arid and semiarid China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Argaman E, Singer A, Tsoar H (2006) Erodibility of some crust forming soils/sediments from the southern Aral Sea Basin as determined in a wind tunnel. Earth Surf Proc Land 31:47–63

    Article  Google Scholar 

  • Arimoto R, Kim YJ, Kim YP, Quinn PK, Bates TS, Anderson TL, Gong S, Uno I, Chin M, Huebert BJ, Clarke AD, Shinozuka Y, Weber RJ, Anderson JR, Guazzotti SA, Sullivan RC, Sodeman DA, Prather A, Sokolik IN (2006) Characterization of Asian dust during ACE-Asia. Global Planet Change 52:23–56

    Article  Google Scholar 

  • Bishop JKB, Davis RE, Sherman JT (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–821

    Article  Google Scholar 

  • Bory AJM, Biscaye PE, Svensson A, Grousset FE (2002) Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP Greenland. Earth Planet Sci Lett 196:123–134

    Article  Google Scholar 

  • Bullard JE, White KH (2005) Dust production and the release of iron oxides resulting from the aeolian abrasion of natural dune sands. Earth Surf Proc Land 30:95–106

    Article  Google Scholar 

  • Bullard JE, McTainsh GH, Pudmenzky C (2004) Aeolian abrasion and modes of fine particle production from natural red dune sands: an experimental study. Sedimentology 51:1103–1125

    Article  Google Scholar 

  • Bullard JE, McTainsh GH, Pudmenzky C (2007) Factors affecting the nature and rate of dust production from natural dune sands. Sedimentology 54:169–182

    Article  Google Scholar 

  • Bullard JE, Baddock M, McTainsh GH, Leys J (2008) Sub-basin scale dust source geomorphology detected using MODIS. Geophys Res Lett 35:L15404. doi:10.1029/2008GL033928

    Article  Google Scholar 

  • Cooke RU (1970) Stone pavement in deserts. Ann Assoc Am Geogr 60:560–577

    Article  Google Scholar 

  • Cooke RU, Smalley IJ (1968) Salt weathering in deserts. Nature 220:1226–1227

    Article  Google Scholar 

  • Dong Z, Wang H, Liu X, Wang X (2003) The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect. Geomorphology 49:219–230

    Article  Google Scholar 

  • Duce RA, Tindale NW (1991) Chemistry and biology of iron and other trace metals. Limnol Oceanogr 36:1715–1726

    Article  Google Scholar 

  • Duce RA, Unni CK, Ray BJ, Prospero JM, Merrill JT (1980) Long-range atmospheric transport of soil dust from Asia to the Tropical North Pacific: temporal variability. Science 209:1522–1524

    Article  Google Scholar 

  • Goudie AS (1999) Experimental salt weathering of limestones in relation to rock properties. Earth Surf Proc Land 24:715–724

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, New York

    Google Scholar 

  • Houser CA, Nickling WG (2001) The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa. Earth Surf Proc Land 26:491–505

    Article  Google Scholar 

  • Hu C, Liu Y, Zhang D, Huang Z, Paulsen BS (2002) Cementing mechanism of algal crust from desert area. Chin Sci Bull 47:1361–1368

    Article  Google Scholar 

  • Husar RB, Tratt DM, Schichtel BA, Falke SR, Li F, Jaffe D, Gassó S, Gill T, Laulainen NS, Lu F, Reheis MC, Chun Y, Westphal D, Holben BN, Gueymard C, McKendry I, Kuring N, Feldman GC, McClain C, Frouin RJ, Merrill J, DuBois D, Vignola F, Murayama T, Nickovic S, Wilson WE, Sassen K, Sugimoto N, Malm WC (2001) Asian dust events of April 1998. J Geophys Res 106(D16):18317–18330

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  Google Scholar 

  • Kim KH, Choi GH, Kang CH, Lee JH, Kim JY, Youn YH, Lee SR (2003) The chemical composition of fine and coarse particles in relation with the Asian dust events. Atmos Environ 37:753–765

    Article  Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Chazette P, Maignan F, Schmechtig C (2005) Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J Geophys Res 110:D18S04. doi:10.1029/2004JD005013

  • Lee JA, Gill TE, Mulligan KR, Acosta MD, Perez AE (2009) Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America. Geomorphology 105:18–27

    Article  Google Scholar 

  • Liu T (1985) Loess and environments. China Ocean Press, Bei**g

    Google Scholar 

  • Livingstone I, Warren A (1996) Aeolian geomorphology: an introduction. Longman, Singapore

    Google Scholar 

  • Macpherson T, Nickling WG, Gillies JA, Etyemezian V (2008) Dust emissions from undisturbed and disturbed supply-limited desert surfaces. J Geophys Res 113:F02S04. doi:10.1029/2007JF000800

    Article  Google Scholar 

  • Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett 30:1903. doi:10.1029/2003GL017880

    Article  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(D8):16415–16430

    Article  Google Scholar 

  • McFadden LD, Eppes MC, Gillespie AR, Hallet B (2005) Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. GSA Bull 117:161–173

    Article  Google Scholar 

  • Mori I, Nishikawa M, Quan H, Morita M (2002) Estimation of the concentration and chemical composition of kosa aerosols at their origin. Atmos Environ 36:4569–4575

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Potter RM, Rossman GR (1977) Desert varnish: the importance of clay minerals. Science 196:1446–1448

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone map** spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. doi:10.1029/2000RG000095

    Article  Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic Press, London

    Google Scholar 

  • Rice MA, McEwan IK (2001) Crust strength: a wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces. Earth Surf Proc Land 26:721–733

    Article  Google Scholar 

  • Sassen K (2002) Indirect climate forcing over the western US from Asian dust storms. Geophys Res Lett 29(10). doi:10.1029/2001GL014051

  • Shao Y, Dong CH (2006) A review on East Asian dust storm climate, modelling and monitoring. Global Planet Change 52:1–22

    Article  Google Scholar 

  • Shao Y, Raupach MR (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98(D7):12719–12726

    Article  Google Scholar 

  • Sun J, Liu T, Lei Z (2000) Sources of heavy dust fall in Bei**g, China on April 16, 1998. Geophys Res Lett 27:2105–2108

    Article  Google Scholar 

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105. doi:10.1029/2003GL019216

    Article  Google Scholar 

  • Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom. Science 300:958–961

    Article  Google Scholar 

  • Wang X, Dong Z, Yan P, Yang Z, Hu Z (2005) Surface sample collection and dust source analysis in northwestern China. Catena 59:35–53

    Article  Google Scholar 

  • Wang X, Zhou Z, Dong Z (2006) Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: an examination based on dust storm frequency from 1960 to 2003. Geomorphology 29:292–308

    Article  Google Scholar 

  • Wang X, **a D, Wang T, **e X, Li J (2008) Dust sources in arid and semiarid China and southern Mongolia: impacts of geomorphologic setting and surface materials. Geomorphology 97:583–600

    Article  Google Scholar 

  • Whalley WB, Smith BJ, McAlister JJ, Edwards AJ (1987) Aeolian abrasion of quartz particles and the production of silt-size fragments: preliminary results. In: Forstick L, Reid I (eds) Desert sediments: ancient and modern, vol 35. Geology Society of America Special Publication, London, pp 129–138

  • Wright J (2001) Making loess-sized silt: data from laboratory simulations and implications for sediment transport pathways and the formation of ‘desert’ loess deposits associated with the Sahara. Quatern Int 76(77):7–19

    Article  Google Scholar 

  • Wright J, Smith B, Whalley B (1998) Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23:15–34

    Article  Google Scholar 

  • Xuan J, Sokolik N (2002) Characterization of sources and emission rates of mineral dust in Northern China. Atmos Environ 36:4863–4876

    Article  Google Scholar 

  • Xuan J, Sokolik IN, Hao J, Guo F, Mao H, Yang G (2004) Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmos Environ 38:6239–6252

    Article  Google Scholar 

  • Zhang XY, Gong SL, Zhao TL, Arimoto R, Wang YQ, Zhou ZJ (2003) Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys Res Lett 30(24):2272. doi:10.1029/2003GL018206

    Article  Google Scholar 

  • Zhou Z, Zhang G (2003) Heavy dust events in North China, 1954–2002. Chin Sci Bull 48:1224–1228

    Google Scholar 

  • Zou XK, Zhai PM (2004) Relationship between vegetation coverage and spring dust storms over northern China. J Geophys Res 109:D03104. doi:10.1029/2003JD003913

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (40871012). We thank Professor Aiguo Zhao (Key Laboratory of Desert and Desertification, Chinese Academy of Sciences) for his advice on the construction of the aeolian sand trap, and Mr. Hong Li for his operation of the wind tunnel. We thank Mr. Geoff Hart for his detailed edits of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, C., Wang, H. et al. The significance of Gobi desert surfaces for dust emissions in China: an experimental study. Environ Earth Sci 64, 1039–1050 (2011). https://doi.org/10.1007/s12665-011-0922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-0922-2

Keywords

Navigation