Log in

Mass fluxes of xenobiotics below cities: challenges in urban hydrogeology

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Urban areas are the focus of major ecological, social and economical activity. They are thus also prime locations of increasing conflict with regard to water use and water protection. As a direct and/or indirect consequence of urban land use and human activity, urban water systems are frequently polluted with organic contaminants including waste water-born xenobiotics such as pharmaceuticals, personal care products (collectively known as PPCPs) and endocrine-active substances. This study reviews new integrated methodologies including flux calculations as well as chemical investigations for determining the impact of human activities on urban water systems and on processes within the urban watershed. The use of indicator substances, representing different contaminant sources and pathways, integral pum** tests and mass balance approaches are suitable alternatives within these environments. The issues are explored using contaminant mass balance examples from Halle/Saale and Leipzig, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bachhausen P, Buchholz N, Hartkamp H (1985) Determination of nitrate by means of cromotropic acid. Fresenius Z. Anal. Chem. 320:490–493

    Article  Google Scholar 

  • Bauer S, Bayer-Raich M, Holder T, Kolesar C, Müller D, Ptak T (2004) Quantification of groundwater contamination in an urban area using integral pum** tests. J Contam Hydrol 75:183–213

    Article  Google Scholar 

  • Bayer-Raich M, Jarsjö J, Liedl R, Ptak T, Teutsch G (2004) Average contaminant concentration and mass flow in aquifers from time-dependent pum** well data: analytical framework. Water Resour Res 40:W08303

    Article  Google Scholar 

  • Bopp SK, MacLachlan MS, Schirmer K (2007) Passive sampler for combined chemical and biological long-term monitoring of groundwater—the Ceramic Toximeter. Environ Sci Technol 41(19):6868–6876

    Article  Google Scholar 

  • Buerge IJ, Poiger T, Müller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700

    Article  Google Scholar 

  • Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38(4):947–954

    Article  Google Scholar 

  • DVWK (1997) Tiefenorientierte Probennahme aus Grundwassermessstellen. DVWK-Merkblatt 245 Wirtschafts- und Verlag-Gesellschaft Gas und Wasser, Bonn

  • Ellis JB, Revitt DM (2002) Sewer losses and interactions with groundwater quality. Water Sci Technol 45:195–202

    Google Scholar 

  • Grischek T, Nestler W, Piechniczek D, Fischer T (1996) Urban groundwater in Dresden, Germany. Hydrogeol J 4:48–63

    Article  Google Scholar 

  • Hatfield K, Annable M, Cho J, Rao PSC, Klammler H (2004) A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181

    Article  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    Article  Google Scholar 

  • Heidrich S, Schirmer M, Weiss H, Wycisk P, Grossmann J, Kaschl A (2004) Regionally contaminated aquifers—toxicological relevance and remediation options (Bitterfeld case study). Toxicolology 205:143–155

    Article  Google Scholar 

  • Kennedy CA, Cuddihy J, Engel Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59

    Article  Google Scholar 

  • Kübert M, Finkel M (2006) Contaminant mass discharge estimation in groundwater based on multi-level point measurements: a numerical evaluation of expected errors. J Contam Hydrol 84(1–2):55–80

    Article  Google Scholar 

  • Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152

    Article  Google Scholar 

  • Leschik S, Musolff A, Martienssen M, Krieg R, Bayer-Raich M, Reinstorf F, Strauch G, Schirmer M (2009a) Investigation of sewer exfiltration using integral pum** tests and wastewater indicators. J Contam Hydrol 110(3–4):118–129

    Article  Google Scholar 

  • Leschik S, Musolff A, Krieg R, Martienssen M, Bayer-Raich M, Reinstorf F, Strauch G, Schirmer M (2009b) Application of integral pum** tests to investigate the influence of a losing stream on groundwater quality. Hydrol Earth Syst Sci 13(10):1765–1774

    Article  Google Scholar 

  • Luckenbach T, Epel D (2005) Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ Health Perspect 113(1):17–24

    Article  Google Scholar 

  • Martienssen M, Fabritius H, Kukla S, Balcke GU, Hasselwander E, Schirmer M (2006) Determination of natural occurring MTBE biodegradation by analysing metabolites and biodegradation products. J Contam Hydrol 87(3–4):37–53

    Article  Google Scholar 

  • Martin H, Patterson BM, Davis GB, Grathwohl P (2003) Comparative field trial of time-integrated aqueous contaminant monitoring with ceramic dosimeters and conventional water sampling. Environ Sci Technol 37:1360–1364

    Article  Google Scholar 

  • Massmann G, Greskowiak J, Dünnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol 328:141–156

    Article  Google Scholar 

  • Massmann G, Sültenfuss J, Dünnbier U, Knappe A, Taute T, Pekdeger A (2008) Investigation of groundwater a residence times during bank filtration in Berlin: multi-tracer approach. Hydrol Process 22(6):788–801

    Article  Google Scholar 

  • Musolff A (2009) Micropollutants—challenges in hydrogeology. Hydrogeol J 14(4):763–766

    Article  Google Scholar 

  • Musolff A, Leschik S, Reinstorf F, Strauch G, Möder M, Schirmer M (2007) Xenobiotika im Grundwasser und Oberflächenwasser der Stadt Leipzig (Xenobiotics in groundwater and surface water in the city of Leipzig). Grundwasser 12(3):217–231

    Article  Google Scholar 

  • Musolff A, Leschik S, Möder M, Strauch G, Reinstorf F, Schirmer M (2009) Temporal and spatial patterns of micropollutants in urban receiving waters. Env Pollut 157(11):3069–3077

    Article  Google Scholar 

  • Musolff A, Leschik S, Schafmeister M-T, Reinstorf F, Strauch G, Krieg R, Schirmer M (2010a) Evaluation of xenobiotic impact on urban receiving waters by means of statistical methods. Water Sci Technol 62(3):684–692

    Article  Google Scholar 

  • Musolff A, Leschik S, Reinstorf F, Strauch G, Schirmer M (2010b) Micropollutant loads in the urban water cycle. Environ Sci Technol 44(13):4877–4883

    Article  Google Scholar 

  • Ort C, Gujer W (2008) Sorption and high dynamics of micropollutants in sewers. Water Sci Technol 57(11):1791–1797

    Article  Google Scholar 

  • Osenbrück K, Gläser H-R, Knöller K, Möder M, Wennrich R, Busch W, Reinstorf F, Schirmer M, Strauch G, Weise SM (2007) Source, transport and fate of organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water Res 41(15):3259–3270

    Article  Google Scholar 

  • Rein A, Bauer S, Dietrich P, Beyer C (2009) Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108(3–4):118–133

    Article  Google Scholar 

  • Reinstorf F, Strauch G, Schirmer K, Gläser H-R, Möder M, Wennrich R, Osenbrück K, Schirmer M (2008) Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany. Environ Pollut 152(2):452–460

    Article  Google Scholar 

  • Rutsch M, Rieckermann J, Krebs P (2006) Quantification of sewer leakage: a review. Water Sci Technol 54(6–7):135–144

    Google Scholar 

  • Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938:199–210

    Article  Google Scholar 

  • Schirmer K, Schirmer M (2008) Who is chasing whom? A call for a more integrated approach to reduce the load of micro-pollutants in the environment. Water Sci Technol 57(1):145–150

    Article  Google Scholar 

  • Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328(3–4):393–407

    Article  Google Scholar 

  • Schirmer M, Strauch G, Schirmer K, Reinstorf F (2007) Urbane Hydrogeologie—Herausforderungen für Forschung und Praxis (Urban hydrogeology—challenges for research and practice). Grundwasser 12(3):178–188

    Article  Google Scholar 

  • Schmitt-Jansen M, Bartels P, Adler N, Altenburger R (2007) Phytotoxicity assessment of diclofenac and its phototransformation products. Anal Bioanal Chem 387(4):1389–1396

    Article  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  Google Scholar 

  • Strauch G, Möder M, Wennrich R, Osenbrück K, Gläser H-R, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soil Sediments 8(1):23–33

    Article  Google Scholar 

  • Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136:503–524

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  Google Scholar 

  • UN (2004) World Urbanization Prospects—the 2003 revision. United Nations, New York

    Google Scholar 

  • Wolf L, Morris B, Burn S (eds.) (2006) Urban water Resources Toolbox—integrating groundwater into urban water management. IWA Publishing, ISBN 1843391384

  • Ying G-G, Tozeb S, Hannab J, Yua X-Y, Dillona PJ, Kookanaa RS (2008) Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. Water Res 42:1133–1141

    Article  Google Scholar 

  • Zhang L, Kennedy C (2006) Determination of sustainable yield in urban groundwater systems: Bei**g, China. J Hydrol Eng 11(1):21–28

    Article  Google Scholar 

Download references

Acknowledgments

We thank our colleagues from the UFZ-integrated project “Micropollutants in water and soil in the urban environment”. We also would like to thank two anonymous reviewers who helped to strengthen the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Schirmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirmer, M., Reinstorf, F., Leschik, S. et al. Mass fluxes of xenobiotics below cities: challenges in urban hydrogeology. Environ Earth Sci 64, 607–617 (2011). https://doi.org/10.1007/s12665-010-0880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0880-0

Keywords

Navigation