Log in

Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Limestone beds of the Late Cretaceous Abiod formation (Campanian-Maastrichtian system) are fundamentally important for the economic growth of the raw material sector in Tunisia. However, little attention has been paid to the detailed physical and chemical properties of the Abiod limestone. Nine limestone samples collected from the Abiod formation outcrop** in the areas of Bizerte, Gafsa and Gabes, Tunisia, as well as their separated clay fractions, were characterized using different techniques, such as XRF, XRD, FTIR and TG/DTA. XRF showed the chemical composition of the limestone in which calcium carbonate was the main constituent, and silica, iron and magnesium were the impurities. XRD also confirmed the presence of small amounts of clay minerals and quartz along with sharp peaks of calcite. FTIR spectra indicated that the limestone was mainly composed of CaCO3 in the form of calcite, as identified by its main characteristic absorption bands. These data were in agreement with XRD and XRF analysis data. The TG/DTA curves of the limestone samples, showing a close similarity to that of pure calcium carbonate, exhibited an endothermic peak between 600 and 760°C, with the maximum near 750°C. Moreover, FTIR spectra of clay fraction samples indicated high silica content in some samples. Especially the samples SD1 and SD2 collected in the northern area showed higher amounts of silica compared with those of AS1, AS2, CHB, ZNC, SND, MKM and GBS collected from southern districts. However, among the latter seven samples, one could recognize two groups based on the clay mineral investigations: (1) limestone with minor amounts of smectite and mixed layer minerals of smectite/illite (AS1 and 2, CHB, ZNC, SND and GBS) and (2) limestone with smectite, kaolinite and apatite (SND and MKM). Differences in these mineralogical and chemical characteristics should be considered when limestone from the Abiod formation is utilized as a medium for heavy metal removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alam AKMM, **e S, Kumar SD, Quader CS (2008) Clay mineralogy of archaeological soil: an approach to paleoclimatic and environmental reconstruction of the archaeological sites of the Paharpur area, Badalgacchi Upazila, Naogaon district, Bangladesh. Environ Geol 53:1639–1650

    Article  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM (2006) Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40:2645–2658

    Article  Google Scholar 

  • Aloui T, Chaabani F (2007) Influence of fractures and karstification on the development of a quarry at Jebel Feriana, Tunisia. Bull Eng Geol Environ 660:345–351

    Article  Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol 99:1578–1583

    Article  Google Scholar 

  • Baccour H, Medhioub M, Jamoussi F, Mhiri T, Daoud A (2008) Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia. Mater Charact 59:1613–1622

    Article  Google Scholar 

  • Ben Ferjani A, Burollet PF, Merji F (1990) Petroleum geology of Tunisia. Entrep Tunis Activ Petrol Mem 1, pp 194

  • Ben Hadj A, Jedoui Y, Dali T, Ben Salem N, Memmi L (1985) Carte géologique de la Tunisie à 1/500,000, Off Nat Mines, Serv Geol Nat Tunisie

  • Bouaziz S (2005) Les matières premières naturelles du gouvernorat de Tataouine: Caractérisation et Utilisations. ODS, Tunisia, pp 61–133

    Google Scholar 

  • Bouaziz S, Sghari A, Benzina M, Sdiri A, Chaabouni R (2007) Les matières premières naturelles du gouvernorat de Gabes: caractérisation et utilisations. ODS, Tunisia, p 380

    Google Scholar 

  • Brown G (1972) The X-ray identification and crystal structure of clay minerals. Mineralogical Society (Clay minerals group), London, pp 212–250

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie Centrale. Annales des Mines et de la Géologie, Tunis 18, pp 345

  • Chaabouni R (2006) Conception d’une base de données sur les carrières en exploitation dans le gouvernorat de Gabès. Mém Master, Fac Sc Sfax Tunisie

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  • Dlala M (2002) Les manifestations tectono-sédimentaires d’âge Campanien–Maastrichtien en Tunisie: implications sur l’évolution géodynamique de la marge Nord-Africaine. C R Geosci 334:135–140

    Article  Google Scholar 

  • Felhi M, Tlili A, Gaied ME, Montacer M (2008) Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Appl Clay Sci 39:208–217

    Article  Google Scholar 

  • Fournie D (1978) Nomenclature lithostratigraphique des séries du Crétacé supérieur au Tertiaire de Tunisie. Bull Centre Rech Explor Prod Elf Aquitaine, Pau, vol 2. N° 1, pp 97–148

  • Frost RL, Kloprogge JT, Ding Z (2002) The Garfield and Uley nontronites-an infrared spectroscopic comparison. Spectrochimica Acta Part A 58:1881–1894

    Article  Google Scholar 

  • Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. The Butterworth Group, England

    Google Scholar 

  • Garcia-Sanchez A, AAlvarez-Ayuso E (2002) Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner Eng 15:539–547

    Article  Google Scholar 

  • Gaïed MS, Ben Haj Ali M, Chaabani F, Zagrani MF, Taamalla MN (2000) Les pierres marbrières en Tunisie. Annales des mines et de la géologie Off Nat Mines, n° 38, pp 112

  • Gunasekaran S, Anbalagan G (2007) Spectroscopic characterization of natural calcite minerals. Spectrochimica Acta Part A 68:656–664

    Article  Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899

    Article  Google Scholar 

  • Hajjaji M, Kacim S, Alami A, El Bouadili A, El Mountassir M (2001) Chemical and mineralogical characterisation of a clay taken from the Moroccan meseta and a study of the interaction between its fine friction and methylene blue. Appl Clay Sci 20:1–12

    Google Scholar 

  • Jackson ML (1973) Soil chemical analysis advanced course, 2nd edn. pp 112–300

  • Jamoussi F, Bédir M, Boukadi N, Kharbachi S, Zargouni F, López-Galindo A, Paquet H (2003) Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins. C R Geosci 335:175–183

    Article  Google Scholar 

  • Jarvis I, Mabrouk A, Moody RTJ, De Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoclimatol Palaeoecol 188:215–248

    Article  Google Scholar 

  • Johns WD, Grim RE, Bradley F (1954) Quantitative estimation of clay minerals by diffraction methods. J Sediment Petrol 24:242–251

    Google Scholar 

  • Jordan MM, Martin-Martin JD, Sanfeliu T, Gomes-Gras D, De la Fuente C (2009) Mineralogy and firing transformations of Permo-Triassic clays used in the manufacturing of ceramic tile bodies. Appl Clay Sci 44:173–177

    Article  Google Scholar 

  • Louhaichi ML (1991) Inventaire des substances minérales utiles dans la région du Dahar, de la Jeffara et de Matmata (Sud tunisien). Off Nat Mines, Division des substances utiles. Rapport inédit, pp 96

  • Madejova J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10

    Article  Google Scholar 

  • Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N (2003) Pigment and terracotta analyses of Hellenistic figurines in Crete. Anal Chim Acta 497:209–225

    Article  Google Scholar 

  • Mattoussi Kort H, Beji Sassi A, Laridhi Ouazaa N (2008) Thermal and hydrothermal influence of magmatic emissions on embedding clays of the Upper Cretaceous of the Tunisian eastern margin and the Pelagic Sea. C R Geosci 340:298–305

    Article  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate. Clays Clay Miner 7:317–327

    Article  Google Scholar 

  • Mejri F, Burollet PF, Ben Ferjani A (2006) Petroleum geology of Tunisia, a renewed synthesis. Entrep Tunis Activ Petrol, Mem. N° 22, pp 233, Tunis

  • Montero MA, Jordan MM, Almendro-Candel MB, Sanfeliu T, Hernandez-Crespo (2009) The use of a calcium carbonate residue from the stone industry in manufacturing of ceramic tile bodies. Appl Clay Sci 43:186–189

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1989) Quantitative analysis. In: Moore DM, Reynolds RC Jr (eds) X-Ray diffraction and the identification and analysis of clay minerals. Oxford Univ Press, Oxford, pp 272–309

    Google Scholar 

  • Negra MH (1994) Les dépôts de plateforme à bassin de Crétacé Supérieur en Tunisie Centro-septentrionale (Formation Abiod et faciès associés). Stratigraphie, Sédimentation, Diagenèse et Interêt Pétrolier. Doctorat e’s-Sciences Thesis, University of Tunisia, Tunis, pp 649

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis mineralogical, organic and inorganic methods. Springer, Berlin, pp 993

  • Patriat M, Ellouz N, Dey Z, Gauliera JM, Ben Kilani H (2003) The Hammamet, Gabes and Chotts basins (Tunisia): a review of the subsidence history. Sediment Geol 156:241–262

    Article  Google Scholar 

  • Prasad PSR, Prasad KS, Chaitanya VK, Babu EVSSK, Sreedhar B, Ramana Murthy S (2006) In situ FTIR study on the dehydration of natural goethite. J Asian Earth Sci 27:503–511

    Article  Google Scholar 

  • Preeti SN, Singh BK (2007) Instrumental characterization of clay by XRF, XRD and FTIR. Bull Mater Sci, vol 30, No. 3, Indian Academy of Sciences, pp 235–238

  • Rouvier H (1977) Géologie de I’Extrême Nord tunisien: Tectoniques et paléogéographies superposées à l’extrémité orientale de la chaîne nord maghrebine. Thèse Doct. es-Sciences, Univ. Pierre et Marie Curie, pp 703

  • Rouvier H (1985) Géologie de l’Extrême Nord tunisien: Tectoniques et paléogeographies superposées a l’extrémité orientale de la chaîne nord maghrebine. Annales des mines et de la géologie N°29, Serv Géol Tunisie, pp 427

  • Samet B, Mnif T, Chaabouni M (2007) Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cem Concr Compos 29:741–749

    Article  Google Scholar 

  • Sun DM, Wu QS (2004) Assembly synthesis of sheet-like calcite array and stable-vaterite by supported liquid membrane. Chin J Chem 22:1067–1069

    Article  Google Scholar 

  • Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37:1047–1058

    Article  Google Scholar 

  • Vagenas NV, Gatsouli A, Kontoyannis CG (2003) Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 59:831–836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sdiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sdiri, A., Higashi, T., Hatta, T. et al. Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environ Earth Sci 61, 1275–1287 (2010). https://doi.org/10.1007/s12665-010-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0450-5

Keywords

Navigation