Log in

A comparative analysis for visualizing the temporal evolution of contact networks: a user study

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Temporal networks are widely used to map phenomena into complex systems in several research disciplines, such as computer science, business, and biology. Several layouts can be used in visual analyses of temporal networks. The identification of the most suitable for a given task is, however, not trivial. This paper presents a user study that analyzes the performance of four different layouts: Massive Sequence View (MSV), Temporal Activity Map, matrix animation, and structural animation, when applied to pattern detection tasks of time-evolving networks. Our results show that all four layouts are appropriate to perform the evaluated tasks; however, the structural animation and MSV scored higher across different types of users.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. DyNetVis is freely available at www.dynetvis.com

  2. www.python.org

References

  • Ahmed NK, Neville J, Kompella R (2013) Network sampling: from static to streaming graphs. ACM Trans Knowl Discov Data 8(2):1–7:56. https://doi.org/10.1145/2601438

  • Ahn Jw, Plaisant C, Shneiderman B (2014) A task taxonomy for network evolution analysis. IEEE Trans Vis Comput Gr 20(3): 365–376. https://doi.org/10.1109/TVCG.2013.238

  • Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764

    Article  Google Scholar 

  • Archambault D, Purchase H, Pinaud B (2011) Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans Vis Comput Gr 17(4):539–552

    Article  Google Scholar 

  • Archambault D, Purchase HC (2016) Can animation support the visualisation of dynamic graphs? Inf Sci SI Vis Info Commun 330: 495 – 509. https://doi.org/10.1016/j.ins.2015.04.017

  • Bach B, Henry-Riche N, Dwyer T, Madhyastha T, Fekete JD, Grabowski T (2015) Small multipiles: piling time to explore temporal patterns in dynamic networks. Comput Gr Forum 34(3):31–40 https://doi.org/10.1111/cgf.12615. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12615

  • Bach B, Pietriga E, Fekete JD (2014) GraphDiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans Vis Comput Gr 20(5):740–754 https://doi.org/10.1109/TVCG.2013.254. https://hal.inria.fr/hal-00906597

  • Battista GD, Eades P, Tamassia R, Tollis IG (1994) Algorithms for drawing graphs: an annotated bibliography. Comput Geom 4(5):235–282

    Article  MathSciNet  Google Scholar 

  • Beck F, Burch M, Diehl S (2009) Towards an aesthetic dimensions framework for dynamic graph visualisations. In: 2009 13th international conference information visualisation, pp 592–597. https://doi.org/10.1109/IV.2009.42

  • Beck F, Burch M, Diehl S (2013) Matching application requirements with dynamic graph visualization profiles. In: 2013 17th international conference on information visualisation, pp 11–18. https://doi.org/10.1109/IV.2013.2

  • Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. Comput Gr Forum 36(1):133–159. https://doi.org/10.1111/cgf.12791

    Article  Google Scholar 

  • Behrisch M, Bach B, Henry Riche N, Schreck T, Fekete JD (2016) Matrix reordering methods for table and network visualization. Comput Gr Forum 35(3):693–716. https://doi.org/10.1111/cgf.12935

    Article  Google Scholar 

  • Behrisch M, Schreck T, Pfister H (2020) Guiro: user-guided matrix reordering. IEEE Trans Vis Comput Gr 26(1):184–194

    Google Scholar 

  • Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008

  • Boyandin I, Bertini E, Lalanne D (2012) A qualitative study on the exploration of temporal changes in flow maps with animation and small-multiples. Comput Gr Forum 31(3pt2):1005–1014. https://doi.org/10.1111/j.1467-8659.2012.03093.x

  • Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann

  • Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A (2010) Dynamics of person-to-person interactions from distributed rfid sensor networks. PloS One 5(7):e11596. https://doi.org/10.1371/journal.pone.0011596

    Article  Google Scholar 

  • Che L, Liang J, Yuan X, Shen J, Xu J, Li Y (2015) Laplacian-based dynamic graph visualization. In: 2015 IEEE pacific visualization symposium (PacificVis), pp 69–73. https://doi.org/10.1109/PACIFICVIS.2015.7156358

  • Cornelissen B, Holten D, Zaidman A, Moonen L, van Wijk JJ, van Deursen A (2007) Understanding execution traces using massive sequence and circular bundle views. In: ICPC, pp 49–58. IEEE Computer Society. https://doi.org/10.1109/ICPC.2007.39

  • Crnovrsanin T, Chu J, Ma KL (2015) An incremental layout method for visualizing online dynamic graphs. In: Revised selected papers of the 23rd international symposium on graph drawing and network visualization, vol 9411. GD 2015. Springer, New York Inc, New York, NY, USA, pp 16–29

  • van den Elzen S, Holten D, Blaas J, van Wijk J (2014) Dynamic network visualization with extended massive sequence views. IEEE T Vis Comput Gr 20:1087–1099

    Article  Google Scholar 

  • van den Elzen S, Holten D, Blaas J, van Wijk JJ (2013) Reordering massive sequence views: enabling temporal and structural analysis of dynamic networks. In: 2013 IEEE pacific visualization symposium (PacificVis), pp 33–40

  • Estrada E (2015) Introduction to complex networks: structure and dynamics, pp 93–131. Springer

  • Federico P, Miksch S (2016) Evaluation of two interaction techniques for visualization of dynamic graphs. In: Hu Y, Nöllenburg M (eds) Graph drawing and network visualization. Springer, Cham, pp 557–571

    Chapter  Google Scholar 

  • Fischer MT, Arya D, Streeb D, Seebacher D, Keim DA, Worring M (2021) Visual analytics for temporal hypergraph model exploration. IEEE Trans Visualization Comput Gr (01):1–1. https://doi.org/10.1109/TVCG.2020.3030408

  • Gemmetto V, Barrat A, Cattuto C (2014) Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect Dis 14(1):695. https://doi.org/10.1186/PREACCEPT-6851518521414365

    Article  Google Scholar 

  • Ghoniem M, Fekete J, Castagliola P (2004) A comparison of the readability of graphs using node-link and matrix-based representations. In: IEEE symposium on information visualization, pp 17–24. https://doi.org/10.1109/INFVIS.2004.1

  • Ghoniem M, Fekete JD, Castagliola P (2005) On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf Vis 4:114–135

    Article  Google Scholar 

  • Harpe SE (2015) How to analyze likert and other rating scale data. Curr Pharm Teach Learn 7(6):836–850. https://doi.org/10.1016/j.cptl.2015.08.001

    Article  Google Scholar 

  • Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. https://doi.org/10.1016/j.physrep.2012.03.001

    Article  Google Scholar 

  • Holten D, van Wijk JJ (2009) Force-directed edge bundling for graph visualization. In: Proceedings of the 11th Eurographics/IEEE - VGTC conference on visualization, EuroVis’09, pp 983–998. The Eurographs Association, Wiley, Chichester, UK. https://doi.org/10.1111/j.1467-8659.2009.01450.x

  • Keller R, Eckert CM, Clarkson PJ (2006) Matrices or node-link diagrams: Which visual representation is better for visualising connectivity models? Inf Vis 5(1):62–76. https://doi.org/10.1057/palgrave.ivs.9500116

  • Kerracher N, Kennedy J, Chalmers K, Graham M (2015) Visual techniques to support exploratory analysis of temporal graph data. In: E. Bertini, J. Kennedy, E. Puppo (eds.) Eurographics conference on visualization (EuroVis)—short papers. The Eurographics Association. https://doi.org/10.2312/eurovisshort.20151133

  • Lambert A, Bourqui R, Auber D (2010) 3d edge bundling for geographical data visualization. In: 2010 14th international conference information visualisation, pp 329–335. https://doi.org/10.1109/IV.2010.53

  • Lhuillier A, Hurter C, Telea A (2017) Ffteb: Edge bundling of huge graphs by the fast fourier transform. In: 2017 IEEE Pacific visualization symposium (PacificVis), pp 190–199. https://doi.org/10.1109/PACIFICVIS.2017.8031594

  • Lin CC, Huang W, Liu WY, Chen CY (2020) On aesthetics for user-sketched layouts of vertex-weighted graphs. J Vis. https://doi.org/10.1007/s12650-020-00695-2

  • Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th international conference on world wide web, pp 685–694. ACM

  • Linhares CDG, Ponciano JR, Paiva JGS, Rocha LEC, Travençolo BAN (2020) Dynetvisan interactive software to visualize structure and epidemics on temporal networks. In: 2020 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 933–936. https://doi.org/10.1109/ASONAM49781.2020.9381304

  • Linhares CDG, Ponciano JR, Paiva JGS, Travençolo BAN, Rocha LEC (2019a) Visualisation of structure and processes on temporal networks, pp 83–105. Cham: Springer

  • Linhares CDG, Ponciano JR, Pereira FSF, Travençolo BAN, Paiva JGS, Rocha LEC (2019b) A scalable node ordering strategy based on community structure for enhanced temporal network visualization. Comput Gr 84:185–198. https://doi.org/10.1016/j.cag.2019.08.006

    Article  Google Scholar 

  • Linhares CDG, Ponciano JR, Pereira FSF, Rocha LEC, Paiva JGS, Travençolo BAN (2020) Visual analysis for evaluation of community detection algorithms. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08700-4

  • Linhares CDG, Travençolo BAN, Paiva JGS, Rocha LEC (2017) DyNetVis: a system for visualization of dynamic networks. In: Proceedings of the symposium on applied computing, SAC ’17, pp 187–194. ACM, Marrakech, Morocco. https://doi.org/10.1145/3019612.3019686

  • Mi P, Sun M, Masiane M, Cao Y, North C (2016) Interactive graph layout of a million nodes. Informatics 3:23. https://doi.org/10.3390/informatics3040023

    Article  Google Scholar 

  • Nobre C, Streit M, Meyer M, Lex A (2019) The state of the art in visualizing multivariate networks. Comput G Forum (EuroVis ’19) 38:807–832. https://doi.org/10.1111/cgf.13728

  • Okoe M, Jianu R, Kobourov S (2019) Node-link or adjacency matrices: old question, new insights. IEEE Trans Vis Comput Gr 25(10):2940–2952

    Article  Google Scholar 

  • Orman GK, Labatut V, Plantevit M, Boulicaut JF (2014) A method for characterizing communities in dynamic attributed complex networks. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 481–484. https://doi.org/10.1109/ASONAM.2014.6921629

  • Ponciano JR, Linhares CDG, Melo SL, Lima LV, Travençolo BAN (2020) Visual analysis of contact patterns in school environments. Inform Edu 19(3): 455–472. https://doi.org/10.15388/infedu.2020.20

  • Robertson G, Fernandez R, Fisher D, Lee B, Stasko J (2008) Effectiveness of animation in trend visualization. IEEE Trans Vis Comput Gr 14(6):1325–1332. https://doi.org/10.1109/TVCG.2008.125

    Article  Google Scholar 

  • Rocha LEC, Masuda N, Holme P (2017) Sampling of temporal networks: methods and biases. Phys Rev E 96:052302. https://doi.org/10.1103/PhysRevE.96.052302

    Article  Google Scholar 

  • Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Nat Acad Sci 105(4):1118–1123. https://doi.org/10.1073/pnas.0706851105

    Article  Google Scholar 

  • Rosvall M, Bergstrom CT (2010) Map** change in large networks. PLoS One 5(1):e8694. https://doi.org/10.1371/journal.pone.0008694

    Article  Google Scholar 

  • Rufiange S, Melançon G (2014) Animatrix: a matrix-based visualization of software evolution. In: 2014 second IEEE working conference on software visualization, pp 137–146

  • Shi L, Wang C, Wen Z, Qu H, Lin C, Liao Q (2015) 1.5d egocentric dynamic network visualization. IEEE Trans Vis Comput Gr 21(5):624–637

  • Six JM, Tollis IG (2006) A framework and algorithms for circular drawings of graphs. J Discret Algorithms 4(1):25–50. https://doi.org/10.1016/j.jda.2005.01.009

    Article  MathSciNet  MATH  Google Scholar 

  • Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton J, Quaggiotto M, Van den Broeck W, Régis C, Lina B, Vanhems P (2011) High-resolution measurements of face-to-face contact patterns in a primary school. PLOS One 6(8):e23176. https://doi.org/10.1371/journal.pone.0023176

    Article  Google Scholar 

  • Tanahashi Y, Ma KL (2012) Design considerations for optimizing storyline visualizations. IEEE Trans Vis Comput Gr 18(12):2679–2688. https://doi.org/10.1109/TVCG.2012.212

    Article  Google Scholar 

  • Vagias WM (2006) Likert-type scale response anchors. Clemson International Institute for Tourism and Research Development, Department of Parks, Recreation and Tourism Management. Clemson University

  • Valdivia P, Buono P, Plaisant C, Dufournaud N, Fekete J (2019) Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE Trans Vis Comput Gr, pp 1–1. https://doi.org/10.1109/TVCG.2019.2933196

  • Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, Kim Ba, Comte B, Voirin N (2013) Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 8: e73970

  • Vehlow C, Beck F, Auwärter P, Weiskopf D (2015) Visualizing the evolution of communities in dynamic graphs. Comput Gr Forum 34(1):277–288. https://doi.org/10.1111/cgf.12512

    Article  Google Scholar 

  • Ware C (2013) Information visualization 3rd Edn, p 514. Interactive Technologies. Morgan Kaufmann, Boston. https://doi.org/10.1016/B978-0-12-381464-7.00018-1

  • Yoghourdjian V, Archambault D, Diehl S, Dwyer T, Klein K, Purchase HC, Wu HY (2018) Exploring the limits of complexity: a survey of empirical studies on graph visualisation. Vis Inform 2(4):264–282. https://doi.org/10.1016/j.visinf.2018.12.006

    Article  Google Scholar 

  • Zhao Y, Chen W, She Y, Wu Q, Peng Y, Fan X (2019) Visualizing dynamic network via sampled massive sequence view. In: Proceedings of the 12th international symposium on visual information communication and interaction, VINCI’2019, pp 32:1–32:2. ACM, New York, NY, USA. https://doi.org/10.1145/3356422.3356454

  • Zhao Y, She Y, Chen W, Lu Y, **a J, Chen W, Liu J, Zhou F (2018) Eod edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6:53006–53018. https://doi.org/10.1109/ACCESS.2018.2870684

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq [grant number 456855/2014-9], Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES PrInt—Grant number 88881.311513/ 2018-01), and São Paulo Research Foundation (FAPESP—Grants number 2020/10049-0, 2016/17078-0). The authors also thank SocioPatterns for making available the network data sets used in this paper. Claudio Linhares thanks Professor Bruce Cronin for partial financial support during his visit to the Centre for Business Network Analysis at the University of Greenwich, UK, in the summer of 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio D. G. Linhares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linhares, C.D.G., Ponciano, J.R., Paiva, J.G.S. et al. A comparative analysis for visualizing the temporal evolution of contact networks: a user study. J Vis 24, 1011–1031 (2021). https://doi.org/10.1007/s12650-021-00759-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-021-00759-x

Keywords

Navigation