Log in

Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Synthesis of metallic nanoparticles by an eco-friendly and sustainable process is an important target to be developed in nanotechnology area. In the present work, two different commercial brands of yerba mate from Argentina and their wastes (PYM and TYM samples) were used for the preparation of aqueous extracts, in order to synthesize silver nanoparticles at room temperature (25 °C). The silver nanoparticles obtained were spherical, hexagonal and, triangular in shape with the average particle size of 50 nm and, shows a surface plasmon peak around 460 nm. The antimicrobial activity of the silver nanoparticles obtained with the extracts from yerba mate wastes was evaluated against E. coli and S. aureus. The minimum inhibitory concentrations required for E. coli were 7.66 and 17.66 µg ml−1 using the treatment T2YE and P2YE, respectively and, for S. aureus were 23.25 and 50.60 µg ml−1 for the treatment T2YE and P2YE, respectively. The study suggests that polyphenols present in I. paraguariensis leaf extract act as reducing agent and stabilizer of the nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grigioni, G., Carduza, F., Irurueta, M., Pensel, N.: Flavour characteristics of Ilex paraguariensis infusion, a typical Argentine product, assessed by sensory evaluation and electronic nose. J. Sci. Food Agric. 84, 427–432 (2004). https://doi.org/10.1002/jsfa.1670

    Article  Google Scholar 

  2. Bracesco, N., Sanchez, A.G., Contreras, V., Menini, T., Gugliucci, A.: Recent advances on Ilex paraguariensis research: minireview. J. Ethnopharmacol. 136, 378–384 (2011). https://doi.org/10.1016/j.jep.2010.06.032

    Article  Google Scholar 

  3. Heck, C.I., De Mejia, E.G.: Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. (2007). https://doi.org/10.1111/j.1750-3841.2007.00535.x

    Article  Google Scholar 

  4. Filip, R., Sebastian, T., Ferraro, G., Anesini, C.: Effect of Ilex extracts and isolated compounds on peroxidase secretion of rat submandibulary glands. Food Chem. Toxicol. 45, 649–655 (2007). https://doi.org/10.1016/j.fct.2006.10.014

    Article  Google Scholar 

  5. Conforti, A.S., Gallo, M.E., Saraví, F.D.: Yerba mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women. Bone. 50, 9–13 (2012). https://doi.org/10.1016/j.bone.2011.08.029

    Article  Google Scholar 

  6. Instituto Nacional de la Yerba Mate, Instituto Nacional de la Yerba Mate (2016). http://yerbamateargentina.org.ar/.

  7. Burris, K.P., Harte, F.M., Davidson, P.M., Neal Stewart, C. Jr., Zivanovic, S.: Composition and bioactive properties of yerba mate (Ilex paraguariensis A. St.-Hil.): a review. Chil. J. Agric. Res. 72, 268–275 (2012). https://doi.org/10.4067/S0718-58392012000200016

    Article  Google Scholar 

  8. Filip, R., López, P., Giberti, G., Coussio, J., Ferraro, G.: Phenolic compounds in seven South American Ilex species. Fitoterapia. 72, 774–778 (2001). https://doi.org/10.1016/S0367-326X(01)00331-8

    Article  Google Scholar 

  9. Bragança, V.L.C., Melnikov, P., Zanoni, L.Z.: Trace elements in different brands of yerba mate tea. Biol. Trace Elem. Res. 144, 1197–1204 (2011). https://doi.org/10.1007/s12011-011-9056-3

    Article  Google Scholar 

  10. Niraimathi, K.L., Sudha, V., Lavanya, R., Brindha, P.: Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B 102, 288–291 (2013). https://doi.org/10.1016/j.colsurfb.2012.08.041

    Article  Google Scholar 

  11. Bindhu, M.R., Umadevi, M.: Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A 101, 184–190 (2013). https://doi.org/10.1016/j.saa.2012.09.031

    Article  Google Scholar 

  12. Mittal, A.K., Chisti, Y., Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013). https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  Google Scholar 

  13. Hebbalalu, D., Lalley, J., Nadagouda, M.N., Varma, R.S.: Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 1, 703–712 (2013). https://doi.org/10.1021/sc4000362

    Article  Google Scholar 

  14. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Pérez, B.O., Pérez, V.M.J.: The greener synthesis of nanoparticles. Trends Biotechnol. 31, 240–248 (2013). https://doi.org/10.1016/j.tibtech.2013.01.003

    Article  Google Scholar 

  15. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  16. Patel, A.C., Li, S., Wang, C., Zhang, W., Wei, Y.: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231–1238 (2007). https://doi.org/10.1021/cm061331z

    Article  Google Scholar 

  17. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A.: Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010). https://doi.org/10.1016/j.arabjc.2010.04.008

    Article  Google Scholar 

  18. Rauwel, E., Simón-Gracia, L., Guha, M., Rauwel, P., Kuunal, S., Wragg, D.: Silver metal nanoparticles study for biomedical and green house applications. IOP Conf. Ser. Mater. Sci. Eng. 175, 11001 (2016). https://doi.org/10.1088/1742-6596/755/1/011001

    Article  Google Scholar 

  19. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007). https://doi.org/10.1016/j.nano.2006.12.001

    Article  Google Scholar 

  20. Chou, W.-L., Yu, D.-G., Yang, M.-C.: The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym. Adv. Technol. 16, 600–607 (2005). https://doi.org/10.1002/pat.630

    Article  Google Scholar 

  21. Windler, L., Height, M., Nowack, B.: Comparative evaluation of antimicrobials for textile applications. Environ. Int. 53, 62–73 (2013). https://doi.org/10.1016/j.envint.2012.12.010

    Article  Google Scholar 

  22. Arreche, R., Bellotti, N., Deyá, C., Vázquez, P.: Assessment of waterborne coatings formulated with sol-gel/Ag related to fungal growth resistance. Prog. Org. Coat. 108, 36–43 (2017). https://doi.org/10.1016/j.porgcoat.2017.04.007

    Article  Google Scholar 

  23. Panacek, A., Kvıtek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R., Kvı, L., Vec, R.: Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253 (2006). https://doi.org/10.1021/jp063826h

    Article  Google Scholar 

  24. Alvarado, R., Solera, F., Vega-Baudrit, J.: Síntesis Sonoquímica de nanopartículas de óxido de cinc y de plata estabilizadas con quitosano. Evaluación de su actividad antimicrobiana. Revista Iberoamericana 15, 134–148 (2014)

    Google Scholar 

  25. Brause, R., Möltgen, H., Kleinermanns, K.: Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B 75, 711–716 (2002). https://doi.org/10.1007/s00340-002-1024-3

    Article  Google Scholar 

  26. Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996). https://doi.org/10.1021/la9502711

    Article  Google Scholar 

  27. Sosa, I.O., Noguez, C., Barrera, R.G.: Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269–6275 (2003). https://doi.org/10.1021/jp0274076

    Article  Google Scholar 

  28. Zhao, Y., Jiang, Y., Fang, Y.: Spectroscopy property of Ag nanoparticles. Spectrochim. Acta A 65, 1003–1006 (2006). https://doi.org/10.1016/j.saa.2006.01.010

    Article  Google Scholar 

  29. El Badawy, A.M., Luxton, T.P., Silva, R.G., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M.: Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44, 1260–1266 (2010). https://doi.org/10.1021/es902240k

    Article  Google Scholar 

  30. Cosgrove, T.: Colloid Science: Principles, Methods and Applications. Wiley, New York (2005). https://doi.org/10.1097/00000433-198206000-00020

    Book  Google Scholar 

  31. El-Zahry, M.R., Mahmoud, A., Refaat, I.H., Mohamed, H.A., Bohlmann, H., Lendl, B.: Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta. 138, 183–189 (2015). https://doi.org/10.1016/j.talanta.2015.02.022

    Article  Google Scholar 

  32. Bastos, D.H.M., Ishimoto, E.Y., Ortiz, M., Marques, M., Fernando Ferri, A., Torres, E.A.F.S.: Essential oil and antioxidant activity of green mate and mate tea (Ilex paraguariensis) infusions. J. Food Compos. Anal. 19, 538–543 (2006). https://doi.org/10.1016/j.jfca.2005.03.002

    Article  Google Scholar 

  33. Berte, K.A., Beux, M.R., Spada, P.K., Salvador, M., Hoffmann-Ribani, R.: Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agric. Food Chem. 59, 5523–5527 (2011). https://doi.org/10.1021/jf2008343

    Article  Google Scholar 

  34. Bastos, D.H.M., Saldanha, L.A., Catharino, R.R., Sawaya, A.C.H.F., Cunha, I.B.S., Carvalho, P.O., Eberlin, M.N.: Phenolic antioxidants identified by ESI-MS from yerba mate (Ilex paraguariensis) and green tea (Camellia sinensis) extracts. Molecules 12, 423–432 (2007)

    Article  Google Scholar 

  35. Isolabella, S., Cogoi, L., López, P., Anesini, C., Ferraro, G., Filip, R.: Study of the bioactive compounds variation during yerba mate (Ilex paraguariensis) processing. Food Chem. 122, 695–699 (2010). https://doi.org/10.1016/j.foodchem.2010.03.039

    Article  Google Scholar 

  36. Anbinder, P.S., Deladino, L., Navarro, A.S., Amalvy, J.I., Martino, M.N.: Yerba mate extract encapsulation with alginate and chitosan systems: interactions between active compound encapsulation polymers. J Encapsul. Adsorpt. Sci. 2011, 80–87 (2011). https://doi.org/10.4236/jeas.2011.14011

    Article  Google Scholar 

  37. Taylor, P., Marcelo, M.C.A., Pozebon, D., Ferrão, M.F.: Authentication of yerba mate according to the country of origin by using Fourier transform infrared (FTIR) associated with chemometrics. Food Addit. Contam. A (2015). https://doi.org/10.1080/19440049.2015.1050702

    Article  Google Scholar 

  38. Shamaila, S., Sajjad, A.K.L., Ryma, N.A., Farooqi, S.A., Jabeen, N., Majeed, S., Farooq, I.: Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150–199 (2016). https://doi.org/10.1016/j.apmt.2016.09.009

    Article  Google Scholar 

  39. Castro, L., Blazquez, M.L., Munoz, J.A., Gonzalez, F., Garcıa-Balboa, C., Ballester, A.: Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 46, 1076–1082 (2011). https://doi.org/10.1016/j.procbio.2011.01.025

    Article  Google Scholar 

  40. Buszewski, B., Railean-plugaru, V., Szultka-mlynska, M., Golinska, P.: Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect. (2016). https://doi.org/10.1016/j.jmii.2016.03.002

    Article  Google Scholar 

  41. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., Sreedhar, B.: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C (2015). https://doi.org/10.1016/j.msec.2015.08.018

    Article  Google Scholar 

  42. Rasulov, B., Rustamova, N., Yili, A., Zhao, H.: Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiol. 61, 283–293 (2015). https://doi.org/10.1007/s12223-015-0436-5

    Article  Google Scholar 

  43. Agnihotri, S., Mukherji, S., Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014). https://doi.org/10.1039/c3ra44507k

    Article  Google Scholar 

  44. Ibrahim, H.M.M.: Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265–275 (2015). https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  45. Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N.: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 76, 50–56 (2010). https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the financial support provided by Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CeNAT-CONARE), POLIUNA-UNIVERSIDAD NACIONAL de Costa Rica, National Scientific and Technical Research Council (CONICET) and National University of La Plata (UNLP). They also thank to Reynaldo Pereira for TEM micrographs, Universidad Nacional for the Dynamic light scattering (DLS) and Zeta potential analysis, and Yendry Corrales Ureña for AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina A. Arreche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arreche, R.A., Montes de Oca-Vásquez, G., Vega-Baudrit, J.R. et al. Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes. Waste Biomass Valor 11, 245–253 (2020). https://doi.org/10.1007/s12649-018-0394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0394-7

Keywords

Navigation