Log in

Effect of Torrefaction Prior to Biomass Size Reduction on Ethanol Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biomass size reduction is a key operation in the process of ethanol production from lignocellulosic materials, since enzymatic saccharification of carbohydrate polymers occurs at the molecular level. Torrefaction technique has been used widely in increasing energy density, hydrophobicity, grindability, enhancing pore structure and reducing the cost of transportation. The aim of this study was to employ torrefaction prior to size reduction of sugarcane bagasse (SB) and waste jute caddies (WJC) and also to investigate its effect on biomass structure, glucose and ethanol yields. The torrefaction experiments of SB and WJC were performed at temperatures of 160, 180, 200 and 220 °C and residence times of 20, 40, and 60 min. The crystallinity and chemical nature of biomass materials were analyzed by XRD and FTIR. The pore structure was also examined for pretreated and untreated samples. The sugarcane bagasse pretreated at 200 °C for 20 min and waste jute caddies pretreated at 180 °C for 40 min were observed to produce highest glucose yields of 199.62 and 234.77 mg g−1, respectively after saccharification. Furthermore, these pretreated SB and WJC under anaerobic fermentation with supplementation of cysteine hydrochloride were noticed to produce ethanol yields of 81.85 and 95.08 mg g−1, respectively. Also, these ethanol yields represent 19.34% increase for SB and 20.28% increase for WJC when compared with ethanol yields of untreated biomass fermented under anaerobic conditions with cysteine hydrochloride supplement. The study demonstrates the possibility of incorporating torrefaction before size reduction in bioethanol production process. In addition, cysteine hydrochloride supplementation enhances ethanol yields through anaerobic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SB:

Sugarcane bagasse

WJC:

Waste jute caddies

FAO:

Food and agriculture organization

ASL:

Acid soluble lignin

AIL:

Acid insoluble lignin

XRD:

X-ray diffraction

CrI:

Crystallinity index

FTIR:

Fourier transform infrared spectroscopy

HMF:

Hydroxymethylfurfural

MTCC:

Microbial type culture collection

References

  1. Sindhu, R., Gnansounou, E., Binod, P., Pandey, A.: Bioconversion of sugarcane crop residue for value added products—an overview. Renew. Energy 98, 203–215 (2016). https://doi.org/10.1016/j.renene.2016.02.057

    Article  Google Scholar 

  2. Salar, T.: FAOSTAT, http://www.fao.org/faostat/en/#data/QC

  3. Singh, J.: A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass—an Indian perspective. Energy Policy 92, 246–254 (2016). https://doi.org/10.1016/j.enpol.2016.02.013

    Article  Google Scholar 

  4. Suhas, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S.: Cellulose: a review as natural, modified and activated carbon adsorbent: biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies. Bioresour. Technol. 216, 1066–1076 (2016)

    Article  Google Scholar 

  5. Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z.: Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 199, 68–75 (2016)

    Article  Google Scholar 

  6. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). https://doi.org/10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  7. Steinbach, D., Kruse, A., Sauer, J.: Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—a review. Biomass Convers. Biorefinery 7, 247–274 (2017)

    Article  Google Scholar 

  8. Bach, Q.V., Skreiberg, O.: Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 54, 665–677 (2016). https://doi.org/10.1016/j.rser.2015.10.014

    Article  Google Scholar 

  9. Granados, D., Chejne, F., Basu, P.: A two dimensional model for torrefaction of large biomass particles. J. Anal. Appl. Pyrol. 120, 1–14(2016)

    Article  Google Scholar 

  10. Chen, Y.H., Chang, C.C., Chang, C.Y., Yuan, M.H., Ji, D.R., Shie, J.L., Lee, C.H., Chen, Y.H., Chang, W.R., Yang, T.Y., Hsu, T.C., Huang, M., Wu, C.H., Lin, F.C., Ko, C.H.: Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal. J. Anal. Appl. Pyrol. 126, 315–322 (2017). https://doi.org/10.1016/j.jaap.2017.05.015

    Article  Google Scholar 

  11. Mahadevan, R., Adhikari, S., Shakya, R., Wang, K., Dayton, D.C., Li, M., Pu, Y., Ragauskas, A.J.: Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. J. Anal. Appl. Pyrol. 122, 95–105 (2016). https://doi.org/10.1016/j.jaap.2016.10.011

    Article  Google Scholar 

  12. Repellin, V., Govin, A., Rolland, M., Guyonnet, R.: Energy requirement for fine grinding of torrefied wood. Biomass Bioenergy 34, 923–930 (2010). https://doi.org/10.1016/j.biombioe.2010.01.039

    Article  Google Scholar 

  13. Chiaramonti, D., Rizzo, A.M., Prussi, M., Tedeschi, S., Zimbardi, F., Braccio, G., Viola, E., Pardelli, P.T.: 2nd Generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment? Biomass Convers. Biorefinery 1, 9–15 (2011). https://doi.org/10.1007/s13399-010-0001-z

    Article  Google Scholar 

  14. Bergman, P., Boersma, A., Zwart, R.W., Kiel, J.H.: Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Centre of Netherlands, Report No. ECN-C-05-013. (2005)

  15. Sadaka, S., Negi, S.: Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy 28, 427–434 (2009). https://doi.org/10.1002/ep.10392

    Article  Google Scholar 

  16. Zhu, J.Y., Pan, X.J.: Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour. Technol. 101, 4992–5002 (2010). https://doi.org/10.1016/j.biortech.2009.11.007

    Article  Google Scholar 

  17. Champagne, P.: Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Feasibility of producing bio-ethanol from waste residues in Canada. Resour. Conserv. Recycl. 50, 211–230 (2007)

    Article  Google Scholar 

  18. Sheikh, M.M.I., Kim, C.H., Park, H.J., Kim, S.H., Kim, G.C., Lee, J.Y., Sim, S.W., Kim, J.W.: Influence of torrefaction pretreatment for ethanol fermentation from waste money bills. Biotechnol. Appl. Biochem. 60, 203–209 (2013). https://doi.org/10.1002/bab.1070

    Article  Google Scholar 

  19. Sheikh, M.M.I., Kim, C.H., Park, H.J., Kim, S.H., Kim, G.C., Lee, J.Y., Sim, S.W., Kim, J.W.: Effect of torrefaction for the pretreatment of rice straw for ethanol production. J. Sci. Food Agric. 93, 3198–3204 (2013). https://doi.org/10.1002/jsfa.6155

    Article  Google Scholar 

  20. Pal, S., Joy, S., Kumbhar, P., Trimukhe, K.D., Gupta, R., Kuhad, R.C., Varma, A.J., Padmanabhan, S.: Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations. Biomass Convers. Biorefinery (2016). https://doi.org/10.1007/s13399-016-0220-z

    Article  Google Scholar 

  21. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of total solids in biomass and total dissolved solids in liquid process samples. Citeseer

  22. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W.: Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58, 9043–9053 (2010). https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  23. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  24. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35, 3748–3762 (2011)

    Google Scholar 

  25. Phanphanich, M., Mani, S.: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 102, 1246–1253 (2011). https://doi.org/10.1016/j.biortech.2010.08.028

    Article  Google Scholar 

  26. Wannapeera, J., Worasuwannarak, N.: Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields. J. Anal. Appl. Pyrol. 115, 279–287 (2015). https://doi.org/10.1016/j.jaap.2015.08.007

    Article  Google Scholar 

  27. Chen, Y., Liu, B., Yang, H., Yang, Q., Chen, H.: Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel 137, 41–49 (2014). https://doi.org/10.1016/j.fuel.2014.07.036

    Article  Google Scholar 

  28. Sermyagina, E., Saari, J., Zakeri, B., Kaikko, J., Vakkilainen, E.: Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant. Appl. Energy 149, 24–34 (2015). https://doi.org/10.1016/j.apenergy.2015.03.102

    Article  Google Scholar 

  29. Aboulkas, A., Nadifiyine, M., Benchanaa, M., Mokhlisse, A.: Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process. Technol. 90, 722–728 (2009)

    Article  Google Scholar 

  30. Fukushima, R.S., Weimer, P.J., Kunz, D.A.: Use of photocatalytic reduction to hasten preparation of culture media for saccharolytic clostridium species. Braz. J. Microbiol. 34, 22–26 (2003). https://doi.org/10.1590/S1517-83822003000100006

    Article  Google Scholar 

  31. Rymovicz, A.U.M., Souza, R.D., Gursky, L.C., Rosa, R.T., Trevilatto, P.C., Groppo, F.C., Rosa, E.A.R.: Screening of reducing agents for anaerobic growth of Candida albicans SC5314. J. Microbiol. Methods 84, 461–466 (2011). https://doi.org/10.1016/j.mimet.2011.01.020

    Article  Google Scholar 

  32. Rada, V., Methods, J.P.-J. of M.: A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43(2), 127–132 (2000)

    Article  Google Scholar 

  33. Ranjan, A., Fuel, V.M.: Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112, 567–571 (2013)

    Article  Google Scholar 

  34. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101, 4900–4906 (2010). https://doi.org/10.1016/j.biortech.2009.10.066

    Article  Google Scholar 

  35. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Google Scholar 

  36. Agu, R., Chiba, Y., Goodfellow, V.: Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. J. Agric. Food Chem. 40, 10147–10154 (2012)

    Google Scholar 

  37. Hsu, T.C., Guo, G.L., Chen, W.H., Hwang, W.S.: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol. (2010). https://doi.org/10.1016/j.biortech.2009.10.009

    Article  Google Scholar 

  38. Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. (2009). https://doi.org/10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  39. Rousset, P., Lapierre, C., Pollet, B., Quirino, W., Perre, P.: Effect of severe thermal treatment on spruce and beech wood lginin. Ann. For. Sci. 66, 1 (2009)

    Article  Google Scholar 

  40. **ao, B., Sun, X.F., Sun, R.C.: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. (2001). https://doi.org/10.1016/S0141-3910(01)00163-X

    Article  Google Scholar 

  41. Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T.: Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.07.033

    Article  Google Scholar 

  42. Chen, Q., Zhou, J., Liu, B., Mei, Q., Luo, Z.: Influence of torrefaction pretreatment on biomass gasification technology. Chin. Sci. Bull. 56, 1449–1456 (2011). https://doi.org/10.1007/s11434-010-4292-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the research support to Department of Chemical Engineering, National Institute of Technology, Rourkela, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Chaluvadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaluvadi, S., Ujjwal, A. & Singh, R.K. Effect of Torrefaction Prior to Biomass Size Reduction on Ethanol Production. Waste Biomass Valor 10, 3567–3577 (2019). https://doi.org/10.1007/s12649-018-0389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0389-4

Keywords

Navigation