Log in

Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2017

This article has been updated

Abstract

Accumulation of alpha-synuclein (α-Syn) is significantly correlated with the presence of progressive motor deficits, which is the main symptom of Parkinson’s disease (PD). Although physical exercise reduces α-Syn levels, the molecular mechanisms by which physical exercise decreases α-Syn remain unclear. We hypothesized that treadmill exercise (TE) decreases α-Syn levels by improving mitochondrial function and promoting autophagy via the sirtuin-1 (SIRT1) signaling pathway in the chronic 1-methyl-1,2,3,6-tetrahydropyridine with probenecid (MPTP/P)-induced mouse model of PD. We found that TE reduces α-Syn levels, which subsequently ameliorates dopaminergic (DAergic) neuron loss and α-Syn-mediated apoptotic cell death. Most importantly, TE increases SIRT1 expression, which results in increased mitochondrial biogenesis and decreased oxidative stress by activating peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). SIRT1 activation by TE also promotes autophagic clearance of α-Syn by inducing the activation of microtubule-associated protein 1 light chain 3 (LC3). Collectively, our results demonstrate that TE may reduce α-Syn levels by improving mitochondrial function and increasing autophagic flux, thereby ameliorating chronic MPTP/P-induced motor deficits in PD mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 24 July 2017

    An erratum to this article has been published.

References

  • Aguiar AS Jr, Tristão FS, Amar M, Chevarin C, Glaser V, de Paula MR, Moreira EL, Mongeau R, Lanfumey L, Raisman-Vozari R, Latini A, Prediger RD (2014) Six weeks of voluntary exercise don’t protect C57BL/6 mice against neurotoxicity of MPTP and MPP+. Neurotox Res 25:147–152

    Article  CAS  PubMed  Google Scholar 

  • Aguiar AS Jr, Lopes SC, Tristão FS, Rial D, de Oliveira G, da Cunha C, Raisman-Vozari R, Prediger RD (2016) Exercise improves cognitive impairment and dopamine metabolism in MPTP-treated mice. Neurotox Res 29:118–125

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Dovero S, Prunier C, Ravenscroft P, Chalon S, Guilloteau D, Crossman AR, Bioulac B, Brotchie JM, Gross CE (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21:6853–6861

    CAS  PubMed  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourdenx M, Bezard E, Dehay B (2014) Lysosomes and alpha-synuclein form a dangerous duet leading to neuronal cell death. Front Neuroanat 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Camilleri A, Vassallo N (2014) The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther 20:591–602

    Article  CAS  PubMed  Google Scholar 

  • Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciron C, Zheng L, Bobela W, Knott GW, Leone TC, Kelly DP, Schneider BL (2015) PGC-1alpha activity in nigral dopamine neurons determines vulnerability to alpha-synuclein. Acta Neuropathol Commun 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimatelis JJ, Hendricks S, Hsieh J, Vlok NM, Bugarith K, Daniels WM, Russell VA (2013) Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain. Exp Physiol 98:233–244

    Article  CAS  PubMed  Google Scholar 

  • Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P, Otto M, Fauler M, Liss B, McLean PJ, Spada AR, Ludolph AC, Weishaupt JH, Danzer KM (2015) Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1alpha deregulation and alpha-synuclein oligomerization. Ann Neurol 77:15–32

    Article  CAS  PubMed  Google Scholar 

  • Frese S, Petersen JA, Ligon-Auer M, Mueller SM, Mihaylova V, Gehrig SM, Kana V, Rushing EJ, Unterburger E, Kägi G, Burgunder JM, Toigo M, Jung HH (2016) Exercise effects in Huntington disease. J Neurol 264(1):32–39

    Article  PubMed  Google Scholar 

  • Furukawa Y, Kish SJ, Fahn S (2004) Dopa-responsive dystonia due to mild tyrosine hydroxylase deficiency. Ann Neurol 55:147–148

    Article  PubMed  Google Scholar 

  • Graff J, Kahn M, Samiei A, Gao J, Ota KT, Rei D, Tsai LH (2013) A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J Neurosci 33:8951–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YJ, Dong SY, Cui XX, Feng Y, Liu T, Yin M, Kuo SH, Tan EK, Zhao WJ, Wu YC (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60:2161–2175

    Article  CAS  PubMed  Google Scholar 

  • Hood RL, Liguore WA, Moore C, Pflibsen L, Meshul CK (2016) Exercise intervention increases spontaneous locomotion but fails to attenuate dopaminergic system loss in a progressive MPTP model in aged mice. Brain Res 1646:535–542

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, Liu W (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57:456–466

    Article  CAS  PubMed  Google Scholar 

  • Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, Rahman I (2010) Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys 500:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151

    Article  CAS  PubMed  Google Scholar 

  • Jang Y, Koo JH, Kwon I, Kang EB, Um HS, Soya H, Lee Y, Cho JY (2017) Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res 1655:186–193

  • Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29:3571–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo JH, Cho JY, Lee UB (2017a) Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson’s disease. Exp Gerontol 89:20–29

    Article  CAS  PubMed  Google Scholar 

  • Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017b) Treadmill exercise decreases amyloid-beta burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 288:142–152

    Article  CAS  PubMed  Google Scholar 

  • Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, Liao PH, Lin FH, Wu ET, Huang CY (2014) Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 36:9706

    Article  Google Scholar 

  • Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO (2011) Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 33:1264–1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauze M, Daneault JF, Duval C (2016) The effects of physical activity in Parkinson’s disease: a review. J Parkinsons Dis 6:685–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ (2008) Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14(Suppl 2):S112–S115

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  • Morais VA, De Strooper B (2010) Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J Alzheimers Dis 20(Suppl 2):S255–S263

    Article  PubMed  Google Scholar 

  • Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D (2012) Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69:1153–1165

    Article  PubMed  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  • Nopparat C, Porter JE, Ebadi M, Govitrapong P (2014) 1-Methyl-4-phenylpyridinium-induced cell death via autophagy through a Bcl-2/Beclin 1 complex-dependent pathway. Neurochem Res 39:225–232

    Article  CAS  PubMed  Google Scholar 

  • Oliveira NR, Marques SO, Luciano TF, Pauli JR, Moura LP, Caperuto E, Pieri BL, Engelmann J, Scaini G, Streck EL, Lira FS, Pinho RA, Ropelle ER, Silva AS, De Souza CT (2014) Treadmill training increases SIRT-1 and PGC-1 alpha protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner. Mediat Inflamm 2014:987017

    Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  CAS  PubMed  Google Scholar 

  • Roberts HL, Brown DR (2015) Seeking a mechanism for the toxicity of oligomeric alpha-synuclein. Biomol Ther 5:282–305

    CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  • Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, Lee JC, Bezrukov SM (2015) α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem 290:18467–18477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sconce MD, Churchill MJ, Greene RE, Meshul CK (2015) Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson’s disease. Neuroscience 299:156–174

    Article  CAS  PubMed  Google Scholar 

  • Shulman LM, Katzel LI, Ivey FM, Sorkin JD, Favors K, Anderson KE, Smith BA, Reich SG, Weiner WJ, Macko RF (2013) Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol 70:183–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kaushik S, Wang Y, **ang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanis L (2012) alpha-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399

    Article  PubMed  PubMed Central  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Tang BL (2016) Sirt1 and the mitochondria. Mol Cell 39:87–95

    Article  CAS  Google Scholar 

  • Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, Vučković MG, Jakowec MW (2014) Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis 63:201–209

    Article  CAS  PubMed  Google Scholar 

  • Trancikova A, Tsika E, Moore DJ (2012) Mitochondrial dysfunction in genetic animal models of Parkinson’s disease. Antioxid Redox Signal 16:896–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsou YH, Shih CT, Ching CH, Huang JY, Jen CJ, Yu L, Kuo YM, Wu FS, Chuang JI (2015) Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol 263:50–62

    Article  CAS  PubMed  Google Scholar 

  • Tuon T, Valvassori SS, Lopes-Borges J, Luciano T, Trom CB, Silva LA, Quevedo J, Souza CT, Lira FS, Pinho RA (2012) Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience 227:305–312

    Article  CAS  PubMed  Google Scholar 

  • Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS, Quevedo J, Souza CT, Pinho RA (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112

    Article  CAS  PubMed  Google Scholar 

  • Tuon T, Souza PS, Santos MF, Pereira FT, Pedroso GS, Luciano TF, De Souza CT, Dutra RC, Silveira PC, Pinho RA (2015) Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxidative Med Cell Longev 2015:261809

    Article  Google Scholar 

  • Wang Z, Guo Y, Myers KG, Heintz R, Holschneider DP (2015) Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise. Neurobiol Dis 77:71–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhang J, Zeng Y (2012) Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11:350–358

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Dong C, Sun C, Ma R, Yang D, Zhu H, Xu J (2015) Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy. Biochem Biophys Res Commun 464:526–533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Yong Cho.

Ethics declarations

All experiments were approved by the Institutional Animal Care and Use Committee at Korea National Sport University and by the Korea Food and Drug Administration (FDA). All mice were carried out in an accredited Korea FDA animal facility in accordance with the AAALAC International Animal Care Policies.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

The original version of this article was revised: An error occurred in Fig. 8A during the final stages of figure mounting. The published bottom panel of Fig. 8A was inappropriately mounted with the wrong GAPDH Western blot control.

An erratum to this article is available at https://doi.org/10.1007/s12640-017-9779-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, JH., Cho, JY. Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease. Neurotox Res 32, 473–486 (2017). https://doi.org/10.1007/s12640-017-9770-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9770-5

Keywords

Navigation