Log in

Aminochrome Induces Disruption of Actin, Alpha-, and Beta-Tubulin Cytoskeleton Networks in Substantia-Nigra-Derived Cell Line

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2010

Abstract

In previous studies, we observed that cells treated with aminochrome obtained by oxidizing dopamine with oxidizing agents dramatically changed cell morphology, thus posing the question if such morphological changes were dependent on aminochrome or the oxidizing agents used to produce aminochrome. Therefore, to answer this question, we have now purified aminochrome on a CM-Sepharose 50–100 column and, using NMR studies, we have confirmed that the resulting aminochrome was pure and that it retained its structure. Fluorescence microscopy with calcein-AM and transmission electron microscopy showed that RCSN-3 cells presented an elongated shape that did not change when the cells were incubated with 50 μM aminochrome or 100 μM dicoumarol, an inhibitor of DT-diaphorase. However, the cell were reduced in size and the elongated shape become spherical when the cells where incubated with 50 μM aminochrome in the presence of 100 μM dicoumarol. Under these conditions, actin, alpha-, and beta-tubulin cytoskeleton filament networks became condensed around the cell membrane. Actin aggregates were also observed in cells processes that connected the cells in culture. These results suggest that aminochrome one-electron metabolism induces the disruption of the normal morphology of actin, alpha-, and beta-tubulin in the cytoskeleton, and that DT-diaphorase prevents these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arriagada A, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  • Baez S, Linderson Y, Segura-Aguilar J (1995) Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med 54:12–18

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–155605

    Article  CAS  PubMed  Google Scholar 

  • Büchi G, Kamikawa T (1977) An alternate synthesis of 5, 6-dihydroxy-2, 3-dihydroindole-2-carboxylates (cyclodopa). J Org Chem 42:4153–4154

    Article  Google Scholar 

  • Buchman VL, Ninkina N (2008a) Modulation of alpha-synuclein expression in transgenic animals for modelling synucleinopathies—is the juice worth the squeeze? Neurotox Res 14:329–341

    Article  PubMed  Google Scholar 

  • Buchman VL, Ninkina N (2008b) Mouse models for studying function of synuclein family members in the normal and degenerating brain. Neurotox Res 13:121

    Google Scholar 

  • Cardenas S, Paris I, Fuentes-Bravo P, Graumann R, Riveros A, lozano J, Calegaro M, Caviedes P, Segura-Aguilar J (2008a) DT-diaphorase protection in catecholaminergic cell line against aminochrome neurotoxic effects. Neurotox Res 13:120

    Google Scholar 

  • Cardenas SP, Perez-Pastene C, Couve E, Segura-Aguilar J (2008b) The DT-diaphorase prevents the aggregation of a-synuclein induced by aminochrome. Neurotox Res 13:136

    Google Scholar 

  • Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Hattori N, Ogawa N (2008) Dopamine induces supernumerary centrosomes and subsequent cell death through Cdk2 up-regulation in dopaminergic neuronal cells. Neurotox Res 14:295–305

    Article  CAS  PubMed  Google Scholar 

  • Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  CAS  PubMed  Google Scholar 

  • Duka T, Sidhu A (2006) The neurotoxin, MPP+, induces hyperphosphorylation of Tau, in the presence of alpha-Synuclein, in SH-SY5Y neuroblastoma cells. Neurotox Res 10:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fernández CO (2008) Synucleinnopathies: structural features and molecular interactions. Neurotox Res 13:120

    Google Scholar 

  • Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-Diaphorase induce cell death in a substantia nigra-derived cell line-an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783

    Article  CAS  PubMed  Google Scholar 

  • Gácsi M, Antal O, Vasas G, Máthé C, Borbély G, Saker ML, Gyori J, Farkas A, Vehovszky A, Bánfalvi G (2009) Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro 23:710–718

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MA, Eibl JK, Crispo JA, Ross GM (2008) Covalent arylation of metallothionein by oxidized dopamine products: a possible mechanism for zinc-mediated enhancement of dopaminergic neuron survival. Neurotox Res 14:317–328

    Article  CAS  PubMed  Google Scholar 

  • González-Aragón D, Ariza J, Villalba JM (2007) Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells. Biochem Pharmacol 73:427–439

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin. J Cell Biol 108:111–126

    Article  CAS  PubMed  Google Scholar 

  • Krasnova IN, Betts ES, Dada A, Jefferson A, Ladenheim B, Becker KG, Cadet JL, Hohmann CF (2007) Neonatal dopamine depletion induces changes in morphogenesis and gene expression in the develo** cortex. Neurotox Res 11:107–130

    Article  CAS  PubMed  Google Scholar 

  • Kueh HY, Mitchison TJ (2009) Structural plasticity in actin and tubulin polymer dynamics. Science 325:960–963

    Article  CAS  PubMed  Google Scholar 

  • Letourneau PC (2009) Actin in axons: stable scaffolds and dynamic filaments. Results Probl Cell Differ 48:65–90

    Article  PubMed  Google Scholar 

  • Liberato D, Byers V, Dennick R, Castagnoli N (1981) Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogs as models for urushiol-protein conjugate formation. J Med Chem 24:28–33

    Article  CAS  PubMed  Google Scholar 

  • Ligon LA, Steward O (2000) Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:351–361

    Article  CAS  PubMed  Google Scholar 

  • Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

    Article  CAS  PubMed  Google Scholar 

  • Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome—mediated conformational alterations. J Biol Chem 280:21212–21219

    Article  CAS  PubMed  Google Scholar 

  • Papakonstanti EV, Vardaki EA, Stournaras C (2000) Actin cytoskeleton: a signaling sensor in cell volume regulation. Cell Physiol Biochem 10:257–264

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Olea-Azar C, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77:519–529

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Martinez-Alvarado P, Cardenas S, Perez-Pastene C, Graumann R, Fuentes P, Olea-Azar C, Caviedes P, Segura-Aguilar J (2005a) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol 18:415–419

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Martinez-Alvarado P, Perez-Pastene C, Vieira MN, Olea-Azar C, Raisman-Vozari R, Cardenas S, Graumann R, Caviedes P, Segura-Aguilar J (2005b) Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. J Neurochem 92:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Cardenas S, Perez-Pastene C, Lozano J, Graumann R, Riveros A, Caviedes P, Segura-Aguilar J (2007) Aminochrome as preclinical model to study degeneration of dopaminergic neurons in Parkinson’s disease. Neurotox Res 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Lozano J, Cardenas S, Perez-Pastene C, Saud K, Fuentes P, Caviedes P, Dagnino-Subiabre A, Raisman-Vozari R, Shimahara T, Kostrzewa JP, Chi D, Kostrzewa RM, Caviedes P, Segura-Aguilar J (2008a) The catecholaminergic RCSN-3 cell line: a model to study dopamine metabolism. Neurotox Res 13:221–230

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Mora S, Raisman-Vozari R, Segura-Aguilar J (2008b) Copper neurotoxicity in rat substantia nigra and striatum is dependent on DT-diaphorase inhibition. Chem Res Toxicol 21:1180–1185

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Lozano J, Perez-Pastene C, Muñoz P, Segura-Aguilar J (2009a) Molecular and neurochemical mechanisms in PD pathogenesis. Neurotox Res 16:271–279

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J (2009b) Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 284:13306–13315

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Riveros A, Cuchillo I, Hanger D, Segura-Aguilar J, Stephenson J (2008) Studies on the effect of the aminochrome treatment in the axonal transport of alpha-synuclein. Neurotox Res 13:147

    Google Scholar 

  • Schultzberg M, Segura-Aguilar J, Lind C (1988) Distribution of DT-diaphorase in the rat brain: biochemical and immunohistochemical studies. Neuroscience 27:763–766

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Lind C (1989) On the mechanism of Mn3+ induced neurotoxicity of dopamine: prevention of quinone derived oxygen toxicity by DT-diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Baez S, Widersten M, Welch CJ, Mannervik B (1997) Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome. J Biol Chem 272:5727–5731

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Metodiewa D, Welch C (1998) Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta 1381:1–6

    CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Diaz-Veliz G, Mora S, Herrera-Marschitz M (2002) Inhibition of DTdiaphorase is a requirement for Mn3+ to produce a 6-OH-dopamine like rotational behaviour. Neurotox Res 4:127–131

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Cardenas S, Riveros A, Fuentes-Bravo P, Lozano J, Graumann R, Paris I, Nassif M, Caviedes P (2006) DT-diaphorase prevents the formation of alpha-synuclein adducts with aminochrome. Soc Neurosci Abstr 824:17

    Google Scholar 

  • Sulzer D, Talloczy Z, Mosharov EM, Martinez-Vicente M, Cuervo AM (2008) Alphasynuclein and autophagy as an early step in Parkinson’s disease. Neurotox Res 13:120

    Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  PubMed  CAS  Google Scholar 

  • Wersinger C, Sidhu A (2005) Disruption of the interaction of R-synuclein with microtubules enhances cell surface recruitment of the dopamine transporter. Biochemistry 44:13612–13624

    Article  CAS  PubMed  Google Scholar 

  • Wolff J (2009) Plasma membrane tubulin. Biochim Biophys Acta 1788:1415–1433

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, Eisner M, Crippa PR, Ito S, Wakamatsu K, Bush WD, Ward WC, Simon JD, Zucca FA (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci USA 105:17567–17572

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280:15587–15594

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT #1061083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Additional information

Irmgard Paris and Carolina Perez-Pastene should be considered as primer author of this work.

Please address all correspondence regarding the use of the RCSN3 cell line to Pablo Caviedes. e-mail: pcaviede@med.uchile.cl.

An erratum to this article can be found at http://dx.doi.org/10.1007/s12640-010-9151-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, I., Perez-Pastene, C., Cardenas, S. et al. Aminochrome Induces Disruption of Actin, Alpha-, and Beta-Tubulin Cytoskeleton Networks in Substantia-Nigra-Derived Cell Line. Neurotox Res 18, 82–92 (2010). https://doi.org/10.1007/s12640-009-9148-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9148-4

Keywords

Navigation