Log in

Taguchi Optimization of Fracture Toughness of Silicon Carbide Extracted from Agricultural Wastes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In India, agricultural wastes such as palm ash and rice husk, which are abundant which have a high potential for usage as usable renewable energy and silica. Silicon carbide (SiC) is utilized for various applications due to its high hardness, compressive strength, and good wear resistance. In this work, a cleaner and green methodology was adopted to produce SiC from various agricultural wastes like peanut shells, rice husks, sugar cane extracts, and corn cob. Pyrolysis experiments were carried out by varying parameters such as heating temperature (600 to 800 °C), heating time (160 to 180 min), and quantity of waste (450 to 550 g) to convert agricultural wastes into powder SiC. X-ray diffraction, Raman, Fourier transform infrared spectroscopy and Scanning electron microscope confirms the formation of SiC phase in SiC. The sintering process parameters such as heating rate (5 to 15°C/min), cooling rate (5 to 15 °C/min), and pressure (60 to 80 MPa) were selected for finding fracture toughness of sintered SiC. The process parameters for the pyrolysis and sintering process were optimized by the Taguchi optimization technique. Confirmations tests were conducted with optimum process parameters and the results indicated that confirmations results are correlated with predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data is used in the review article.

References

  1. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1:1–19. https://doi.org/10.1007/s42452-019-0172-6

    Article  CAS  Google Scholar 

  2. Andreola F, Lancellotti I, Manfredini T, Barbieri L (2020) The circular economy of agro and post-consumer residues as raw materials for sustainable ceramics. Int J Appl Ceram Technol 17:22–31. https://doi.org/10.1111/ijac.13396

    Article  CAS  Google Scholar 

  3. Rajarao R, Sahajwalla V (2016) A cleaner, sustainable approach for synthesising high purity silicon carbide and silicon nitride nanopowders using macadamia shell waste. J Clean Prod 133:1277–1282. https://doi.org/10.1016/j.jclepro.2016.06.029

    Article  CAS  Google Scholar 

  4. Guo J, Liu Y, Liu L et al (2020) A low-cost and facile method to recycle silicon carbide particles from the solar grade silicon slicing wastes. Silicon 12:2405–2412. https://doi.org/10.1007/s12633-019-00334-y

    Article  CAS  Google Scholar 

  5. Peerzada JG, Chidambaram R (2021) A statistical approach for biogenic synthesis of nano-silica from different agro-wastes. Silicon 13:2089–2101. https://doi.org/10.1007/s12633-020-00629-5

    Article  CAS  Google Scholar 

  6. Shadiya MA, Dominic CDM, Nandakumar N, et al (2021) Isolation and characterization of fibrillar nanosilica of floral origin: Cortaderia selloana flowers as the silica source. Silicon. https://doi.org/10.1007/s12633-021-01185-2

  7. Kavitha N, Balasubramanian M, Vashistha YD (2011) Synthesis and characterization of nano silicon carbide powder from agricultural waste. Trans Indian Ceram Soc 70:115–118. https://doi.org/10.1080/0371750X.2011.10600156

    Article  CAS  Google Scholar 

  8. Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization 7:201–235. https://doi.org/10.1007/s12649-015-9459-z

    Article  CAS  Google Scholar 

  9. Salema AA, Afzal MT, Bennamoun L (2017) Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour Technol 233:353–362. https://doi.org/10.1016/j.biortech.2017.02.113

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, **e Q, Zhang B, et al (2016) Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol 204:164–170. https://doi.org/10.1016/j.biortech.2015.12.085

    Article  CAS  PubMed  Google Scholar 

  11. Huang YF, Chiueh P Te, Lo SL (2016) A review on microwave pyrolysis of lignocellulosic biomass. Sustain Environ Res 26:103–109. https://doi.org/10.1016/j.serj.2016.04.012

    Article  CAS  Google Scholar 

  12. Dai L, Fan L, Liu Y, et al (2017) Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Elsevier Ltd, Amsterdam

  13. Antunes E, Schumann J, Brodie G, et al (2017) Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal. J Environ Manage 196:119–126. https://doi.org/10.1016/j.jenvman.2017.02.080

    Article  CAS  PubMed  Google Scholar 

  14. Salamah S, Trisunaryanti W (2021) Hydrocracking of waste cooking oil into biofuel using mesoporous silica from Parangtritis Beach sand synthesized with sonochemistry. Silicon. https://doi.org/10.1007/s12633-021-01117-0

  15. Chang MY, Huang WJ (2015) Production of silicon carbide liquid fertilizer by hydrothermal carbonization processes from silicon containing agricultural wasted biomasses. EARTH 2015 - Proc 13th Int Symp East Asian Resour Recycl Technol 20:555–561

    Google Scholar 

  16. Abderrazak H HE (2011) Silicon carbide: synthesis and properties. In: Rosario Gerhardt (ed) Properties and applications of Silicon Carbide. Intech, pp 361–388

  17. Embong R, Shafiq N, Kusbiantoro A (2016) Silica extraction and incineration process of sugarcane bagasse ash (SCBA) as pozzolanic materials: A review. ARPN J Eng Appl Sci 11:7304–7308

    CAS  Google Scholar 

  18. Chandrasekhar S, Satyanarayana KG, Pramada PN, et al (2003) Processing, properties and applications of reactive silica from rice husk - An overview. J Mater Sci 38:3159–3168. https://doi.org/10.1023/A:1025157114800

    Article  CAS  Google Scholar 

  19. Meng B, Zheng J, Yuan D, Xu S (2019) Machinability improvement of silicon carbide via femtosecond laser surface modification method. Appl Phys A Mater Sci Process 125:1–12. https://doi.org/10.1007/s00339-018-2377-8

    Article  CAS  Google Scholar 

  20. Hossain MA, Jewaratnam J, Ganesan P, et al (2016) Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: Parametric investigation. Energy Convers Manag 115:232–243. https://doi.org/10.1016/j.enconman.2016.02.058

    Article  CAS  Google Scholar 

  21. Aseer JR, Sankaranarayanasamy K, Jayabalan P, et al (2015) Mechanical and water absorption properties of municipal solid waste and banana fiber-reinforced urea formaldehyde composites. Environ Prog Sustain Energy 34:211–221. https://doi.org/10.1002/ep.11966

    Article  CAS  Google Scholar 

  22. Montgomery DC (2012) Design and analysis of experiments, 8th edn, Wiley

  23. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Intech, Croatia

    Book  Google Scholar 

  24. Rosa JL, Robin A, Silva MB, et al (2009) Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J Mater Process Technol 209:1181–1188. https://doi.org/10.1016/j.jmatprotec.2008.03.021

    Article  CAS  Google Scholar 

  25. Koumoto K, Takeda S, CHP (1989) High-resolution electron microscopy observations. Energy Convers 87:1985–1987

    Google Scholar 

  26. Wada N, Solin SA, Wong J, Prochazka S (1981) Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J Non Cryst Solids 43:7–15. https://doi.org/10.1016/0022-3093(81)90169-1

    Article  CAS  Google Scholar 

  27. Yang WH, Tarng YS (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol 84:122–129. https://doi.org/10.1016/S0924-0136(98)00079-X

    Article  Google Scholar 

  28. Arab A, Ahmad ZA, Ahmad R (2015) Effects of yttria stabilized zirconia (3Y-TZP) percentages on the ZTA dynamic mechanical properties. Int J Refract Met Hard Mater 50:157–162. https://doi.org/10.1016/j.ijrmhm.2015.01.005

    Article  CAS  Google Scholar 

  29. Wahsh MMS, Khattab RM, Awaad M (2012) Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites. Mater Des 41:31–36. https://doi.org/10.1016/j.matdes.2012.04.040

    Article  CAS  Google Scholar 

  30. Chen P, Kim GY, Ni J (2007) Investigations in the compaction and sintering of large ceramic parts. J Mater Process Technol 190:243–250. https://doi.org/10.1016/j.jmatprotec.2007.02.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Lovely Professional University, Phagwara, Punjab, and NITTTR, Chandigarh, India.

Funding

Author Contributions.

Author information

Authors and Affiliations

Authors

Contributions

Amit Kumar Thakur: Conceptualization, Formal analysis, Writing-Original Draft, Investigation.

Ajay Kumar Kaviti: Conceptualization, Formal analysis, Writing - Original Draft. 

Mohd Tariq Siddiqi: Conceptualization, Formal analysis, Writing - Original Draft. 

J Ronald Aseer: Conceptualization, Writing - Original Draft, Writing - Review & Editing. 

Rajesh Singh: Conceptualization, Writing - Review & Editing, Supervision. 

Anita Gehlot: Conceptualization, Writing - Review & Editing, Supervision.

Corresponding author

Correspondence to Amit Kumar Thakur.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing interests.

Disclosure of Potential Conflicts of Interest

The authors declare no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Kaviti, A.K., Siddiqi, M.T. et al. Taguchi Optimization of Fracture Toughness of Silicon Carbide Extracted from Agricultural Wastes. Silicon 14, 8021–8029 (2022). https://doi.org/10.1007/s12633-021-01551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01551-0

Keywords

Navigation