Log in

Optical, FTIR and ESR Spectral Investigations of Tungsten Ions in Barium Phosphate Host Glass and Effects of Gamma Irradiation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Tungsten oxide (0.25 – 3% WO3) doped barium phosphate glasses were prepared by the conventional melting annealing procedure. Spectroscopic FTIR infrared and ESR measurements were applied at 0 and 10 Mrad doses of gamma irradiations. The UV-Visible spectrum of the base glass consists of distinct ultraviolet peaks that can be correlated with trace ferric (Fe3+ ions) impurities. UV-Visible absorption spectra of WO3 – doped glasses show similar ultraviolet absorption as the base glass and a very broad visible band settled at about 720 nm and with the high content sample (3% WO3) two peaks are identified at 602 and 790 nm on the very broad visible absorption band. These additional broad band accompanied by the bluish color to the samples support the assumption of the formation or presence of pentavalent tungsten ions because of the reducing nature of the phosphate host glass. Gamma irradiation produces some extension of the UV absorption of the undoped glass spectrum accompanied by the generation of an induced visible broad band centered at 520 nm. These extra induced changes are related to some photochemical reactions leading to the partial oxidation of some ferrous ions to ferric ions through the radiation effect. The induced broad visible band is assumed to be related to the formation of phosphorus oxygen hole centers (POHC) or nonbridging oxygen hole centers (NBOHC) from interaction of gamma rays on the phosphate network. Gamma irradiation of WO3 doped glasses reveals the increase of the intensity of the very broad band and in the high content sample (3% WO3), a new induced band is generated at about 411 nm. These changes are assumed to be related to some photochemical reactions involving the conversion of some W6+ ions to W5+ ions by capturing electrons or by photo-reduction of W6+ ions to W4+ ions and thus imparting the additional peak at 411 nm. FTIR results of the studied glasses reveal the appearance of vibrational modes due to phosphate network groups mainly of metaphosphate units or P–O–P linkages as the response of the chemical composition 50% BaO – 50% P2O5. The infrared results of the radiative samples have no notable changes due to compactness of the phosphate with noticeable amount of heavy Ba2+ ions which seem to retard the passage of liberated electrons or positive holes during the irradiation process and thus the network structure remains unaffected. ESR spectra of WO3 – doped glasses reveal distinct signals due to the unpaired pentavalent ions which are stable towards irradiation due to the existence of a high content of the heavy Ba2+ ions which block the passage of negative and positive holes during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin SW (1991) Eur J Solid State Inorg Chem 28:163

    CAS  Google Scholar 

  2. Guo (1998) G Glass Technol 39:138

    CAS  Google Scholar 

  3. Brow RK (2000) J Non −Cryst Solids 263/264:1

    Article  Google Scholar 

  4. Walter G, Vogel J, Hoppe U, Hartmann P (2001) J Non −Cryst Solids 296:212

    Article  CAS  Google Scholar 

  5. Day DE, Wu Z, Ray CS, Hrma P (1998) J Non-Cryst Solids 241:1

    Article  CAS  Google Scholar 

  6. Bamford CR (1977) Colour generation and control in glass, glass science and technology, vol 2. Elsevier Science Publisher, Amsterdam

  7. ElBatal FH, Hamdy YM, Marzouk SY (2009) J Non-Cryst Solids 355:2439

    Article  CAS  Google Scholar 

  8. ElBatal FH, Marzouk SY (2009) J Mater Sci 44(12):3061

    Article  CAS  Google Scholar 

  9. Abdelghany AM, ElBatal FH, Azooz MA, Ouis MA, ElBatal HA (2012) Spectrochim Acta A Mol Biomol Spectrosc 98:148

    Article  CAS  Google Scholar 

  10. ElBatal FH, Marzouk SY, Ezz-Eldin FM (2010) J Non-Cryst Solids 356:2750

    Article  CAS  Google Scholar 

  11. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1991) Advanced Inorganic Chemistry 6th Edition. Wiley & Sons Inc., New York

    Google Scholar 

  12. Boudlich D, Bih L, Archidi M, Haddad M, Yacoubi A, Nadiri A, Elouadi B (2002) J Am Ceram Soc 85:623

    Article  CAS  Google Scholar 

  13. Poirier G, Poulain M, Messaddeq Y, Ribeiro SJL (2005) J Non-Cryst Solids 51:293

    Article  Google Scholar 

  14. Bishay A (1970) J Non-Cryst Solids 3:54

    Article  Google Scholar 

  15. Friebele EJ (1991). In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glasses. American Ceramic Society Westerville, OH

  16. El Batal FH (2007) Nucl Instr Meth Phys Res (B): Beam Interactions with Materials and Atoms 265:521

    Article  CAS  Google Scholar 

  17. ElBatal FH (2008) J Mater Sci 43:1070

    Article  CAS  Google Scholar 

  18. Marzouk M, ElBatal H, Eisa W (2016) Indian J Phys 90(7):781

    Article  CAS  Google Scholar 

  19. Hammad H, Marzouk MA, ElBatal HA (2016) Silicon 8:123

    Article  CAS  Google Scholar 

  20. Sigel GH, Ginther RJ (1968) Glass Technol 9:66

    CAS  Google Scholar 

  21. Cook L, Mader KH (1982) J Am Ceram Soc 65:597

    Article  CAS  Google Scholar 

  22. Duffy JA (1997) Phys Chem Glasses 38:289

    CAS  Google Scholar 

  23. Ehrt D (2002) C R Chimie 5:679

    Article  CAS  Google Scholar 

  24. Moncke D, Ehrt D (2004) Optic Mater 25:425

    Article  CAS  Google Scholar 

  25. El-Batal FH, Abo-Naf SM (2005) Ind J Pure & Appl Phys 43:579

    CAS  Google Scholar 

  26. ElBatal FH (2008) J Mater Sci 43:1070

    Article  CAS  Google Scholar 

  27. Marzouk MA, ElBatal FH, Abdelghany AM (2013) Spectrochim Acta A 114:658

    Article  CAS  Google Scholar 

  28. Von Dirke M, Müller S, Bärner K, Rager H (1990) J Non-Cryst Solids 124:265

    Article  CAS  Google Scholar 

  29. Fruchart JM, Herve G, Launay JP, Massart R (1976) J Inorg Nucl Chem 38:1627

    Article  CAS  Google Scholar 

  30. Koffyberg FP, Benko FA (1980) J Non-Cryst Solids 40:7

    Article  CAS  Google Scholar 

  31. Salje E, Hoppmann G (1981) Phil Mag (B) 43:105

    Article  CAS  Google Scholar 

  32. Kleperis J J, Cikmach P D, Lusis AR (1984) Phys Stat Solidi (A) 83:291

    Article  Google Scholar 

  33. Poirier G, Messaddeq Y, Ribeiro SJL, Poulain M (2005) J Solid State Chem 178:1533

    Article  CAS  Google Scholar 

  34. Poirier G, Poulain M, Messaddeq Y, Ribeiro SJL (2005) J Non-Cryst Solids 351:293–298

    Article  CAS  Google Scholar 

  35. Flower GL, Baskaran GS, Mohan NK, Veeraiah N (2006) Mater Chem Phys C 100:211

    Article  CAS  Google Scholar 

  36. Boudlich D, Bih L, Archidi ME, Haddad M, Yacoubi A, Nadiri A, Elouadi B (2002) J Amer Ceram Soc 85:623

    Article  CAS  Google Scholar 

  37. Ouis MA, El-Batal HA, Azooz MA, Abdelghany AM (2013) Indian J Pure & Appl Phys 51:11

    CAS  Google Scholar 

  38. Tarte P (1983) Spectrochimiea Acta 19:25

    Article  Google Scholar 

  39. Condrate A (1972) Introduction to Glass Science. Plenum Press, New York, p 101

  40. Abdel-Kader A, Higazy AA, Elkholy MM (1991) J Mater Sci Mater Elec 2:157

    Article  CAS  Google Scholar 

  41. Efimov AM (1997) J Non-Cryst Solids 209:209

    Article  CAS  Google Scholar 

  42. Moustafa YM, El-Egili K (1998) J Non-Cryst Solids 240:144

    Article  CAS  Google Scholar 

  43. Dey A, Gupta AD, Basu D, Ambashta RD, Wattal PK, Kumar S, Body M, Rajamohanan PR (2014) J Radioanal Nucl Chem 299:19–24

    Article  CAS  Google Scholar 

  44. ElBadry KM, Abo-Naf SM, Saad EA, Marzouk SY, Marzouk MA (2010) Glas Phys Chem 36:190

    Article  CAS  Google Scholar 

  45. Marzouk MA, ElBatal FH, Eisa WH, Ghoneim NA (2014) J Non-Cryst Solids 387:155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. ElBatal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, M.A., ElBatal, F.H., Ghoneim, N.A. et al. Optical, FTIR and ESR Spectral Investigations of Tungsten Ions in Barium Phosphate Host Glass and Effects of Gamma Irradiation. Silicon 10, 959–965 (2018). https://doi.org/10.1007/s12633-017-9553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9553-x

Keywords

Navigation