Log in

Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The practical application of magnesium hydride (MgH2) was seriously limited by its high desorption temperature and slow desorption kinetics. In this study, a bullet-like catalyst based on vanadium related MOFs (MOFs-V) was successfully synthesized and doped with MgH2 by ball milling to improve its hydrogen storage performance. Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V2O3 with a bullet-like structure. After adding 7wt% MOFs-V, the initial desorption temperature of MgH2 was reduced from 340.0 to 190.6°C. Besides, the MgH2+7wt%MOFs-V composite released 6.4wt% H2 within 5 min at 300°C. Hydrogen uptake was started at 60°C under 3200 kPa hydrogen pressure for the 7wt% MOFs-V containing sample. The desorption and absorption apparent activity energies of the MgH2+7wt%MOFs-V composite were calculated to be (98.4 ± 2.9) and (30.3 ± 2.1) kJ·mol−1, much lower than (157.5 ± 3.3) and (78.2 ± 3.4) kJ·mol−1 for the as-prepared MgH2. The MgH2+7wt%MOFs-V composite exhibited superior cyclic property. During the 20 cycles isothermal dehydrogenation and hydrogenation experiments, the hydrogen storage capacity stayed almost unchanged. X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) measurements confirmed the presence of metallic vanadium in the MgH2+7wt%MOFs-V composite, which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353.

    Article  CAS  Google Scholar 

  2. Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32.

    Article  CAS  Google Scholar 

  3. M. Chen, Y.H. Pu, Z.Y. Li, et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2, Nano Res., 13(2020), No. 8, p. 2063.

    Article  CAS  Google Scholar 

  4. F.M. Nyahuma, L.T. Zhang, M.C. Song, et al., Significantly improved hydrogen storage behaviors of MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1788.

    Article  CAS  Google Scholar 

  5. X.S. Liu, H.Z. Liu, N. Qiu, et al., Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials, Rare Met., 40(2021), No. 4, p. 1003.

    Article  CAS  Google Scholar 

  6. J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183.

    Article  CAS  Google Scholar 

  7. M. Ismail, M.S. Yahya, N.A. Sazelee, et al., The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832.

    Article  CAS  Google Scholar 

  8. Q.Q. Kong, H.H. Zhang, Z.L. Yuan, et al., Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2, ACS Sustainable Chem. Eng., 8(2020), No. 12, p. 4755.

    Article  CAS  Google Scholar 

  9. Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, and F. Zhan, Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys, Int. J. Hydrogen Energy, 29(2004), No. 8, p. 843.

    Article  CAS  Google Scholar 

  10. Z.Y. Li, S.L. Li, Z.M. Yuan, Y.H. Zhang, and Y. Qi, Micro-structure, hydrogen storage thermodynamics and kinetics of La5Mg95−xNix (x = 5, 10, 15) alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 1057.

    Article  CAS  Google Scholar 

  11. X.P. Ren, F.F. Zhang, Q.M. Guo, H.L. Hou, and Y.Q. Wang, Hydrogen absorption behavior of TA15 alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 210.

    Article  CAS  Google Scholar 

  12. M.J. Liu, S.C. Zhao, X.Z. **ao, et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities, Nano Energy, 61(2019), p. 540.

    Article  CAS  Google Scholar 

  13. Y.F. Liu, H.F. Du, X. Zhang, et al., Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride, Chem. Commun., 52(2016), No. 4, p. 705.

    Article  Google Scholar 

  14. C. Lu, J.X. Zou, X.Y. Shi, X.Q. Zeng, and W.J. Ding, Synthesis and hydrogen storage properties of core-shell structured binary Mg@Ti and ternary Mg@Ti@Ni composites, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2239.

    Article  CAS  Google Scholar 

  15. X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101.

  16. L.Z. Ouyang, F. Liu, H. Wang, et al., Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865.

  17. J.T. Hu, J.J. Zhang, H.Y. **ao, et al., A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb, Int. J. Hydrogen Energy, 46(2021), No. 40, p. 21050.

    Article  CAS  Google Scholar 

  18. Y.H. Zhang, W. Zhang, Z.M. Yuan, et al., Hydrogen storage performances of as-milled REMg11Ni (RE = Y, Sm) alloys catalyzed by MoS2, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1828.

    Article  CAS  Google Scholar 

  19. W.L. Mi, Z.S. Liu, T. Kimura, A. Kamegawa, and H.L. Wang, Crystal structure and hydrogen storage properties of (La, Ce)Ni5xMx (M = Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 108.

    Article  CAS  Google Scholar 

  20. C.Q. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178.

    Article  Google Scholar 

  21. T.Z. Si, Y. Cao, Q.G. Zhang, et al., Enhanced hydrogen storage properties of a Mg-Ag alloy with solid dissolution of indium: A comparative study, J. Mater. Chem. A, 3(2015), No. 16, p. 8581.

    Article  CAS  Google Scholar 

  22. M.G. Verón, H. Troiani, and F.C. Gennari, Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties, Carbon, 49(2011), No. 7, p. 2413.

    Article  Google Scholar 

  23. B. Wang, D.Y. Ong, Y.H. Li, et al., Stereo-controlled anti-hydromagnesiation of aryl alkynes by magnesium hydrides, Chem. Sci., 11(2020), No. 20, p. 5267.

    Article  CAS  Google Scholar 

  24. K. Wang, X. Zhang, Y.F. Liu, et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2, Chem. Eng. J., 406(2021), art. No. 126831.

  25. C.C. Xu, X.Z. **ao, J. Shao, et al., Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 791.

    Article  CAS  Google Scholar 

  26. Y. Wang, C.H. An, Y.J. Wang, et al., Core-shell Co@C catalyzed MgH2: Enhanced dehydrogenation properties and its catalytic mechanism, J. Mater. Chem. A, 2(2014), No. 38, p. 16285.

    Article  CAS  Google Scholar 

  27. Z.Y. Wang, X.L. Zhang, Z.H. Ren, et al., In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2, J. Mater. Chem. A, 7(2019), No. 23, p. 14244.

    Article  CAS  Google Scholar 

  28. L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626.

    Article  Google Scholar 

  29. N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, 2021. DOI: https://doi.org/10.1016/j.jma.2021.03.014

  30. M.C. Song, L.T.Zhang, J.G. Zheng, Z.D. Yu, and S.N. Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1464.

    Article  CAS  Google Scholar 

  31. G. Liang, J. Huot, S. Boily, A. van Neste, and R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1–2, p. 247.

    Article  CAS  Google Scholar 

  32. G. Liang, J. Huot, S. Boily, A. van Neste, and R. Schulz, Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite, J. Alloys Compd., 291(1999), No. 1–2, p. 295.

    Article  CAS  Google Scholar 

  33. P. Rizo-Acosta, F. Cuevas, and M. Latroche, Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium, J. Mater. Chem. A, 7(2019), No. 40, p. 23064.

    Article  CAS  Google Scholar 

  34. M.O.T. da Conceição, M.C. Brum, and D.S. dos Santos, The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties, J. Alloys Compd., 586(2014), p. S101.

    Article  Google Scholar 

  35. Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195.

    Article  CAS  Google Scholar 

  36. L.T. Zhang, Z.L. Cai, X.Q. Zhu, et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2, J. Alloys Compd., 805(2019), p. 295.

    Article  CAS  Google Scholar 

  37. L.T. Zhang, L.X. Chen, X.L. Fan, et al., Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes, J. Mater. Chem. A, 5(2017), No. 13, p. 6178.

    Article  CAS  Google Scholar 

  38. Z.L. Ma, J.G. Zhang, Y.F. Zhu, et al., Facile synthesis of carbon supported nano-Ni particles with superior catalytic effect on hydrogen storage kinetics of MgH2, ACS Appl. Energy Mater., 1(2018), No. 3, p. 1158.

    Article  CAS  Google Scholar 

  39. Y.Q. Wang, Z.Q. Lan, H. Fu, H.Z. Liu, and J. Guo, Synergistic catalytic effects of ZIF-67 and transition metals (Ni, Cu, Pd, and Nb) on hydrogen storage properties of magnesium, Int. J. Hydrogen Energy, 45(2020), No. 24, p. 13376.

    Article  CAS  Google Scholar 

  40. Z.Y. Wang, Z.H. Ren, N. Jian, et al., Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2, J. Mater. Chem. A, 6(2018), No. 33, p. 16177.

    Article  CAS  Google Scholar 

  41. H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), No. 11, p. 1702.

    Article  CAS  Google Scholar 

  42. P. Wang, Z.H. Tian, Z.X. Wang, et al., Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst, Int. J. Hydrogen Energy, 46(2021), No. 53, p. 27107.

    Article  CAS  Google Scholar 

  43. T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613.

  44. N.A. Sazelee, N.H. Idris, M.F. Md Din, et al., LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results Phys., 16(2020), art. No. 102844.

  45. Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790.

  46. S. Hu, H.H. Zhang, Z.L. Yuan, et al., Ultrathin K2Ti8O17 nanobelts for improving the hydrogen storage kinetics of MgH2, J. Alloys Compd., 881(2021), art. No. 160571.

  47. Y. Wang, L. Li, C.H. An, et al., Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride, Nanoscale, 6(2014), No. 12, art. No. 6684.

    Google Scholar 

  48. M.S. Yahya and M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem., 28(2019), p. 46.

    Article  Google Scholar 

  49. M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys., 7(1939), No. 12, p. 1103.

    Article  CAS  Google Scholar 

  50. M.J. Liu, X.Z. **ao, S.C. Zhao, et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride, J. Mater. Chem. A, 7(2019), No. 10, p. 5277.

    Article  CAS  Google Scholar 

  51. W. Zhu, S. Panda, C. Lu, et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2, ACS Appl. Mater. Inter., 12(2020), No. 45, p. 50333.

    Article  CAS  Google Scholar 

  52. L.C. Zhang, K. Wang, Y.F. Liu, et al., Highly active multi-valent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2, Nano Res., 14(2021), No. 1, p. 148.

    Article  CAS  Google Scholar 

  53. H.Z. Liu, C.L. Lu, X.C. Wang, et al., Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2, ACS Appl. Mater. Interfaces, 13(2021), No. 11, p. 13235.

    Article  CAS  Google Scholar 

  54. X. Huang, X.Z. **ao, W. Zhang, et al., Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride, Phys. Chem. Chem. Phys., 19(2017), No. 5, p. 4019.

    Article  CAS  Google Scholar 

  55. X. Zhang, Z.H. Leng, M.X. Gao, et al., Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources, 398(2018), p. 183.

    Article  CAS  Google Scholar 

  56. M. Zhang, X.Z. **ao, J.F. Mao, et al., Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride, Mater. Today Energy, 12(2019), p. 146.

    Article  Google Scholar 

  57. P. Wang, Z.X. Wang, Z.H. Tian, et al., Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: The catalytic effect of in situ formed MgS and Mg2NiH4 phases, Renewable Energy, 160(2020), p. 409.

    Article  CAS  Google Scholar 

  58. N.S. Norberg, T.S. Arthur, S.J. Fredrick, and A.L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution, J. Am. Chem. Soc., 133(2011), No. 28, p. 10679.

    Article  CAS  Google Scholar 

  59. W. Liu and K.F. Aguey-Zinsou, Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method, J. Mater. Chem. A, 2(2014), No. 25, art. No. 9718.

    Google Scholar 

  60. T. Liu, H.L. Shen, Y. Liu, et al., Scaled-up synthesis of nanostructured Mg-based compounds and their hydrogen storage properties, J. Power Sources, 227(2013), p. 86.

    Article  CAS  Google Scholar 

  61. T.P. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51801078) and the Natural Science Foundation of Jiangsu Province (No. BK20180986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuting Zhang.

Additional information

Conflict of Interest

The authors declared that they have no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., He, J., Song, M. et al. Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2. Int J Miner Metall Mater 30, 44–53 (2023). https://doi.org/10.1007/s12613-021-2372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2372-5

Keywords

Navigation