Log in

Testing banker plants for biological control of mites on roses

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

We tested whether plant species used in a banker plant system influence the success of a biological control program with predatory mites. Banker plants (BP) may sustain a reproducing population of predators and provide long-term pest suppression. In an experiment lasting 12 weeks, we analyzed the responses of the predatory mite Amblyseius californicus and the pest mite Tetranychus urticae to eight species of potential BP with different morphological structures. Every BP was paired with a rose plant and infested with pest and predatory mites. The measured parameters were vitality and growth of the plants and numbers of predators, pests and their eggs. Reproduction and establishment of the pest and predatory mites differed among plant species as well as plant growth and vitality. Vitis riparia and Viburnum tinus were the most efficient BP in this combination of pest–predator species. Their presence resulted in best health of the rose crops, highest number of predatory mites and lowest number of pests. Both these BP possess domatia which may be responsible for the efficiency in hosting predatory mites. Overall, the species which fulfilled the requirements of a BP best was the local shrub V, tinus, which bore no pests and a very large number of predators and has a compact growth form suited for application in greenhouses. Although our study gives only evidence for an artificial system with a high BP:crop ratio, high numbers of introduced predators and short distances between plants, this study contributes to knowledge of BP systems and to improve the understanding of the criteria for the choice of local plant species to be used as BP for biological control in IPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, A. A., Karban, R., & Colfer, R. G. (2000). How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos, 89, 70–80.

    Article  Google Scholar 

  • Badawy, M. E. I., Sailan, A. A., El-Arami, A., & Abdelgaleil, S. A. M. (2010). Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Experimental and Applied Acarology, 52, 261–274.

    Article  CAS  Google Scholar 

  • Briggs, C. J., & Borer, E. T. (2005). Why short-term experiments may not allow long-term predictions about intraguild predation. Ecological Applications, 15, 1111–1117.

    Article  Google Scholar 

  • Casey, C., Newman, J., Robb, K., Tjosvold, S. A., MacDonald, J. D., & Parrella, M. P. (2007). IPM program successful in California greenhouse cut roses. California Journal of Agriculture, 61, 71–78.

    Article  Google Scholar 

  • Castagnoli, M., Liguori, M., & Simoni, S. (1999). Effect of two different host plants on biological features of Neoseiulus californicus (McGregor). International Journal of Acarology, 25, 145–150.

    Article  Google Scholar 

  • Chitgar, M. G., & Ghadamyari, M. (2012). Effects of amitraz on the parasitoid Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae) for control of Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae): IOBC methods. Journal of the Entomological Research Society, 14, 61–69.

    Google Scholar 

  • Cortesero, A. M., Stapel, J. O., & Lewis, W. J. (2000). Understanding and manipulating plant attributes to enhance biological control. Biological Control, 17, 35–49.

    Article  Google Scholar 

  • Desneux, N., & Ramirez-Romero, R. (2009). Plant characteristics mediated by growing conditions can impact parasitoid’s ability to attack host aphids in winter canola. Journal of Pest Science, 82, 335–342.

    Google Scholar 

  • Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.

    Google Scholar 

  • Finke, D. L., & Denno, R. F. (2006). Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia, 149, 265–275.

    Article  PubMed  Google Scholar 

  • Frank, S. D. (2010). Biological control of arthropod pests using banker plant systems: past progress and future directions. Biological Control, 52, 8–16.

    Article  Google Scholar 

  • Gerson, U., & Weintraub, P. G. (2007). Mites for the control of pests in protected cultivation. Pest Management Science, 63, 658–676.

    Article  PubMed  CAS  Google Scholar 

  • Gotoh, T., Tsuchiya, A., & Kitashima, Y. (2006). Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 40, 189–204.

    Article  Google Scholar 

  • Grevstad, F. S., & Klepetka, B. W. (1992). The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia, 92, 399–404.

    Article  Google Scholar 

  • Grostal, P., & O'Dowd, D. J. (1994). Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia, 97, 308–315.

    Google Scholar 

  • Gurr, G. M., Wratten, S. D., & Altieri, M. A. (2004). Ecological engineering for pest management: Advances in habitat manipulation for arthropods. Collingwood, UK: CSIRO Publishing.

    Google Scholar 

  • Heimpel, G. E., & Jervis, M. A. (2005). Does floral nectar improve biological control by parasitoids? In F. L. Wäckers, P. C. J. van Rijn, & J. Bruin (Eds.), Plant-provided food for carnivorous insects: A protective mutualism and its applications (pp. 267–304). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Huang, N., Enkegaard, A., Osborne, L. S., Ramakers, P. M. J., Messelink, G. J., Pijnakker, J., et al. (2011). The banker plant method in biological control. Critical Reviews in Plant Sciences, 30, 259–278.

    Article  Google Scholar 

  • Letourneau, D. K., Armbrecht, I., Salguero Rivera, B., Montoya Lerma, J., Jiménez Carmona, E., Daza, M. C., et al. (2011). Does plant diversity benefit agroecosystems? A synthetic review. Ecologia Applicata, 21, 9–21.

    Article  Google Scholar 

  • Liang, P., Tian, Y. A., Biondi, A., Desneux, N., & Gao, X. W. (2012). Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology, 21, 1889–1898.

    Google Scholar 

  • Lu, Y. H., Wu, K. M., Jiang, Y. Y., Guo, Y. Y., & Desneux N. (2012). Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 487, 362–365.

    Google Scholar 

  • Madadi, H., Parizi, E. M., Allahyari, H., & Enkegaard, A. (2011). Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. Journal of Pest Science, 84, 447–455.

    Google Scholar 

  • Marcic, D. (2012). Acaricides in modern management of plantfeeding mites. Journal of Pest Science, 85, 395–408.

    Google Scholar 

  • Martin, N. A., Workman, P. J., & Marias, T. (1996). IPM for greenhouse crops in New Zealand: progress, problems and prospects. IOBC WPRS Bulletin, 19, 99–102.

    Google Scholar 

  • Morandi, M. A. B., Sutton, J. C., & Maffia, L. A. (2000). Relationships of aphid and mite infestations to control of Botrytis cinerea by Clonostachys rosea in rose (Rosa hybrida) leaves. Phytoparasitica, 28, 55–64.

    Article  Google Scholar 

  • Parolin, P., Bresch, C., Muller, M. M., Errard, A., & Poncet, C. (2011). Distribution of acarodomatia and predatory mites on Viburnum tinus. Journal of Mediterranean Ecology, 11, 41–48.

    Google Scholar 

  • Parolin, P., Bresch, C., Bout, A., Ruiz, G., Poncet, C., & Desneux, N. (2012b). Characteristics of banker plants for installation of natural enemies. Acta Horticulturae, 927, 211–217.

    Google Scholar 

  • Parolin, P., Bresch, C., Brun, R., Bout, A., Boll, R., Desneux, N., et al. (2012a). Secondary plants used in biological control: a review. International Journal of Pest Management, 58, 91–100.

  • Parolin, P., Bresch, C., Poncet, C., & Desneux, N. (2012c). Functional characteristics of secondary plants for increased pest management. International Journal of Pest Management, 58, 369–377.

    Google Scholar 

  • Pfannenstiel, R. S., & Yeargan, K. V. (1998). Associations of predaceous Hemiptera with selected crops. Environment Entomology, 27, 232–239.

    Google Scholar 

  • Pickett, C. H., Simmons, G. S., Lozano, E., & Goolsby, J. A. (2004). Augmentative biological control of whiteflies using transplants. BioControl, 49, 665–688.

    Article  Google Scholar 

  • Poncet, C., Mailleret, L., Desneux, N., Muller, M.M., Bout, A., Brun, R., Pizzol, J., Boll, R., Bresch, C., Parolin, P., & Fatnassi, H. (2012). Ecological approach of greenhouse agro-ecosystem: practical interest for IPM. Acta Horticulturae, 927, 173-185.

    Google Scholar 

  • Prasifka, J. R., Hellmich, R. L., Dively, G. P., & Lewis, L. C. (2005). Assessing the effects of pest management on nontarget arthropods: the influence of plot size and isolation. Environment Entomology, 34, 1181–1192.

    Article  Google Scholar 

  • Price, P. (1980). Evolutionary biology of parasites. Princeton Monographs in Population Biology. Princeton, NJ, USA: Princeton University Press.

    Google Scholar 

  • Ripper, W. (1944). Biological control as a supplement to chemical control of insect pests. Nature, 153, 448–452.

    Article  Google Scholar 

  • Sabelis, M. W. (1990). How to analyse prey preference when prey density varies? A new method to discriminate between the effects of gut fullness and prey type composition. Oecologia, 82, 289–298.

    Article  Google Scholar 

  • Sarwar, M., Kongming, W., Xuenong, X., & Endong, W. (2011). Evaluations of four mite predators (Acari: Phytosiidae) released for suppression of spider mite infesting protected crop of sweet pepper (Capsicum annuum L). African Journal of Agricultural Research, 6, 3509–3514.

    Google Scholar 

  • Scott Brown, A. S., Simmonds, M. S. J., & Blaney, W. M. (1999). Influence of species of host plants on the predation of thrips by Neoseiulus cucumeris, Iphiseius degenerans and Orius laevigatus. Entomologia Experimentalis et Applicata, 92, 283–288.

    Article  Google Scholar 

  • Shad, S. A., Sayyed, A. H., Fazal, S., Saleem, M. A., Zaka, S. M., & Ali, M. (2012). Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). Journal of Pest Science, 85, 153–162.

    Google Scholar 

  • Skirvin, D., & Fenlon, J. (2001). Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control. Bulletin of Entomological Research, 91, 61–67.

    PubMed  CAS  Google Scholar 

  • Skirvin, D., & Roberts, I. (2007). Modelling plant architecture to determine biocontrol strategies. Wellsbourne, UK: Technical report. University of Warwick.

    Google Scholar 

  • Skirvin, D. J., De Courcy Williams, M., Fenlon, J. S., & Sunderland, K. D. (2002). Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops. Journal of Applied Ecology, 39, 469–480.

    Article  Google Scholar 

  • SPSS (2010) IBM SPSS Statistics 190 – August 2010.

  • Stara, J., Ourednickova, J., & Kocourek, F. (2011). Laboratory evaluation of the side effects of insecticides on Aphidius colemani (Hymenoptera: Aphidiidae), Aphidoletes aphidimyza (Diptera: Cecidomyiidae), and Neoseiulus cucumeris (Acari: Phytoseidae). Journal of Pest Science, 84, 25–31.

  • Sütterlin, S., & van Lenteren, J. C. (1997). Influence of hairiness of Gerbera jamesonii leaves on the searching efficiency of the parasitoid Encarsia formosa. Biological Control, 9, 157–165.

    Article  Google Scholar 

  • Van Rijn, P. C. J., Van Houten, Y. M., & Sabelis, M. W. (2002). How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83, 2664–2679.

    Article  Google Scholar 

  • Wäckers, F. L. (2004). Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biological Control, 29, 307–314.

    Article  Google Scholar 

  • Wratten, S. D., Gillespie, M., Decourtye, A., Mader, E., & Desneux, N. (2012). Pollinator habitat enhancement: benefits to other ecosystem services. Agriculture, Ecosystems & Environment, 159, 112–122.

    Google Scholar 

  • **ao, Y., Chen, J., Cantliffe, D., McKenzie, C. L., Houben, K., & Osborne, L. (2011). Establishment of papaya banker plant system for parasitoid, Encarsia sophia (Hymenoptera: Aphilidae) against Bemisia tabaci (Hemiptera: Aleyrodidae) in greenhouse tomato production. Biological Control, 58, 239–247.

    Article  Google Scholar 

  • Yano, S., Wakabayashi, M., Takabayashi, J., & Takafuji, A. (1998). Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae) a method for quantifying host plant acceptance. Experimental and Applied Acarology, 22, 595–601.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Post-Doc grant from the Department of Plant Health and Environment of INRA, for which we are grateful. Two anonymous reviewers and the subject editor made valuable comments and corrections on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Parolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parolin, P., Bresch, C., Ruiz, G. et al. Testing banker plants for biological control of mites on roses. Phytoparasitica 41, 249–262 (2013). https://doi.org/10.1007/s12600-012-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-012-0285-6

Keywords

Navigation