Log in

Microstructure and properties of cerium oxide/polyurethane elastomer composites

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In general, inorganic filler/polyurethane elastomer (PUE) composites possess favorable properties, such as modulus, chemical resistance, and heat stability, are promising for broadening the application area of polyurethanes (PU). For the experiments, a series of cerium oxide (CeO2)/PUE composites were prepared with different sizes and appearance of CeO2, and different mixing methods as well. CeO2 particles with different sizes were added into PUs during the formation of urethane linkage and the chain-extend process, respectively. The morphology along with mechanical properties, thermal properties of the composites were studied. The results suggest that the size of CeO2 and mixing methods influence the microstructure of PUs which has profound effect on properties of these composites. The composites tend to form more quantity of hard domains (HDs) with small size when CeO2 particles were added before the formation of urethane linkage, whereas CeO2 particles increase the size of HDs when added with chain extender into PU prepolymer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ng HN, Allegrezza AE, Seymour RW, Cooper SL. Effect of segment size and polydispersity on the properties of polyurethane block polymers. Polymer. 1973;14:255.

    Article  CAS  Google Scholar 

  2. Jeffrey TK, Thomas PR. Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules. 1986;19(3):714.

    Article  Google Scholar 

  3. P. Cristina, in Polyurethane Elastomers: From Morphology to Mechanical Aspects, Ed by P. Cristina. Springer, Wien, 2011. 7

  4. Zhang CL, Hu JL, Chen SJ, Ji FL. Theoretical study of hydrogen bonding interactions on MDI-based polyurethane. J Mol Model. 2010;16(8):1391.

    Article  CAS  Google Scholar 

  5. Chen YC, Zhou SX, Gu GX, Wu LM. Microstructure and properties of polyester-based polyurethane/titania hybrid films prepared by sol–gel process. Polymer. 2006;47(5):1640.

    Article  CAS  Google Scholar 

  6. Nayak S, Chaki TK, Khastgir D. Dielectric relaxation and viscoelastic behavior of polyurethane–titania composites: dielectric mixing models to explain experimental results. Polym Bull. 2017;74(2):369.

    Article  CAS  Google Scholar 

  7. Nayak S, Sahoo B, Chaki TK, Khastgir D. Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material. RSC Adv. 2013;3(8):2620.

    Article  CAS  Google Scholar 

  8. Chen JJ, Zhu CF, Deng HT, Qin ZN, Bai YQ. Preparation and characterization of the waterborne polyurethane modified with nanosilica. J Polym Res. 2009;16(4):375.

    Article  CAS  Google Scholar 

  9. Chen YC, Zhou SX, Yang HH, Wu LM. Structure and properties of polyurethane/nanosilica composites. J Appl Polym Sci. 2005;95(5):1032.

    Article  CAS  Google Scholar 

  10. Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP. Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci. 2011;376(1–2):188.

    Article  CAS  Google Scholar 

  11. Bilotti E, Zhang R, Deng H, Baxendale M, Peijs T. Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. J Mater Chem. 2010;20(42):9449.

    Article  CAS  Google Scholar 

  12. Jung YC, Kim HH, Kim YA, Kim JH, Cho JW, Endo M, Dresselhaus MS. Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules. 2010;43(14):6106.

    Article  CAS  Google Scholar 

  13. Huang K, Pisharath S, Ng SC. Preparation of polyurethane–carbon nanotube composites using ‘click’ chemistry. Tetrahedron Lett. 2015;56(4):577.

    Article  CAS  Google Scholar 

  14. Zou H, Ran QP, Wu SS, Shen J. Study of nanocomposites prepared by melt blending TPU and montmorillonite. Polym Compos. 2008;29(4):385.

    Article  CAS  Google Scholar 

  15. Liu XD, Guo J, Tang WF, Li HF, Gu XY, Sun J, Zhang S. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Pt A-Appl Sci Manuf. 2019;119:291.

    Article  CAS  Google Scholar 

  16. Hao N, Wu J, Wan JN, Liu ZY. Morphology and mechanical properties of UV-curable castor oil-based waterborne polyurethane/organic montmorillonite nanocomposites. Plast Rubber Compos. 2017;46(8):346.

    Article  CAS  Google Scholar 

  17. He YX, Wu DY, Zhou MY, Liu H, Zhang L, Chen Q, Yao BH, Yao DH, Jiang DF, Liu CT, Guo ZH. Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Appl Surf Sci. 2020;506:144946.

    Article  CAS  Google Scholar 

  18. He YX, Chen QY, Yang S, Lu C, Feng MT, Jiang YL, Cao GX, Zhang JP, Liu CT. Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Compos Pt A-Appl Sci Manuf. 2018;108:12.

    Article  CAS  Google Scholar 

  19. Yang J, Yang WA, Wang XL, Dong MY, Liu H, Evan KW, Shao Q, Wu SD, Ding T, Guo ZH. Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol Chem Phys. 2019;220(12):1800567.

    Article  CAS  Google Scholar 

  20. Zhang D, Sun JY, Lee LJ, Jose MC. Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng Sci. 2020;10:35.

    CAS  Google Scholar 

  21. Zheng ZY, Olaseeni O, Li B. 2S-soy protein-based biopolymer as a non-covalent surfactant and its effects on electrical conduction and dielectric relaxation of polymer nanocomposites. Eng Sci. 2018;4:87.

    Google Scholar 

  22. Zhang ZZ, Zhang JX, Li SY, Liu JP, Dong MG, Li YC, Lu N, Lei SY, Tang JJ, Fan JC, Guo ZH. Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Pt B-Eng. 2019;176:107338.

    Article  CAS  Google Scholar 

  23. Lyu LF, Liu JR, Liu H, Liu CT, Lu Y, Sun K, Fan RH, Wang N, Lu N, Guo ZH, Evan KW. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng Sci. 2018;2:26.

    Google Scholar 

  24. Wang J, Shi ZC, Wang X, Mai XY, Fan RH, Liu H, Wang XJ, Guo ZH. Enhancing dielectric performance of poly (vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Eng Sci. 2018;4:79.

    Google Scholar 

  25. Li T, Gao Y, Zheng K, Ma YM, Ding D, Zhang H. Achieving better greenhouse effect than glass: visibly transparent and low emissivity metal-polymer hybrid metamaterials. ES Energy Environ. 2019;5:102.

    Google Scholar 

  26. Chen RK, Bao J, Yan Z, Huang XJ, Yun J, Zeng XF, Chen JF. Preparation of transparent dispersions with monodispersed Ag nanoparticles for TiO2 photoelectrode materials with excellent photovoltaic performance. Eng Sci. 2019;8:54.

    Google Scholar 

  27. Luo XL, Pan Z, Pei F, ** ZP, Miao KK, Yang PF, Qian HM, Chen Q, Feng GD. In situ growth of hollow Cu2O spheres using anionic vesicles as soft templates. J Ind Eng Chem. 2018;59:410.

    Article  CAS  Google Scholar 

  28. Shi XF, Wang C, Zhang JX, Guo L, Lin J, Pan D, Zhou JY, Fan JC, Ding T, Guo ZH. Zwitterionic glycine modified Fe/Mg-layered double hydroxides for highly selective and efficient removal of oxyanions from polluted water. J Mater Sci Technol. 2020;51:8.

    Article  Google Scholar 

  29. Yu JF, Sun LY. Facile one-pot synthesis of silver nanoparticles supported on α-zirconium phosphate single-layer nanosheets. ES Mater Manuf. 2019;5:24.

    Google Scholar 

  30. Miao KK, Luo XL, Wang W, Guo JL, Guo SF, Cao FJ, Hu YQ, Chang PM, Feng GD. One-step synthesis of Cu–SBA-15 under neutral condition and its oxidation catalytic performance. Microporous Mesoporous Mater. 2019;289:109640.

    Article  CAS  Google Scholar 

  31. Subramania A, Subasri A, Vignesh M, Vijayakumar G. A facile polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell. ES Energy Environ. 2019;4:59.

    Google Scholar 

  32. Fu QF, Cao HJ, Liang GS, Luo LJ, Chen YJ, Vignesh M, Wu SD, Ding T, Lin CF, Guo ZH. A highly Li+-conductive HfNb24O62 anode material for superior Li+ storage. Chem Commun. 2020;56(4):619.

    Article  CAS  Google Scholar 

  33. Zhu XZ, Liang GS, Fu QF, Li RJ, Chen YJ, Bi YC, Pan D, Rajib D, Lin CF, Guo ZH. An inverse opal Cu2Nb34O87 anode for high-performance Li+ storage. Chem Commun. 2020;56(53):7321.

    Article  CAS  Google Scholar 

  34. Gao JF, Yang JH, Zhang XY, Zhao J, Liu XW, Shi BF. Synthesis and fluorescence properties of CdTe: Eu3+ nanocrystals and core–shell SiO2-coated CdTe: Eu3+ nanospheres. Rare Met. 2019;38(10):989.

    Article  CAS  Google Scholar 

  35. Tan L, Zhang XY, **a T, Huang GJ, Liu Q. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension-compression fatigue testing. Rare Met. 2020;39(2):162.

    Article  CAS  Google Scholar 

  36. Pan X, Hu Q, Xu JJ, Sheng YW, Liang XB, Mu YR. Properties of Fe78Si9B13 amorphous powder and magnetic powder core with sha** processing. Chin J Rare Met. 2019;43(4):395.

    Google Scholar 

  37. Yang H, Xu B, Yuan SS, Zhang QT, Zhang M, Ohno T. Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance. Appl Catal B-Environ. 2019;243:513.

    Article  CAS  Google Scholar 

  38. Karunakaran C, Gomathisankar P. Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustain Chem Eng. 2013;1(12):1555.

    Article  CAS  Google Scholar 

  39. Guo HC, Li WJ, Wang HY, Zhang JH, Liu Y, Zhou Y. A study of phosphate adsorption by different temperature treated hydrous cerium oxides. Rare Met. 2011;30(1):58.

    Article  CAS  Google Scholar 

  40. Pang JH, Liu Y, Li J, Yang XJ. Solvothermal synthesis of nano-CeO2 aggregates and its application as a high-efficient arsenic adsorbent. Rare Met. 2018;38(1):73.

    Article  CAS  Google Scholar 

  41. Xu B, Zhang QT, Yuan SS, Zhang M, Ohno T. Morphology control and photocatalytic characterization of yttrium-doped hedgehog-like CeO2. Appl Catal B-Environ. 2015;164:120.

    Article  CAS  Google Scholar 

  42. Xu B, Zhang QT, Yuan SS, Zhang M, Ohno T. Synthesis and photocatalytic performance of yttrium-doped CeO2 with a porous broom-like hierarchical structure. Appl Catal B. 2016;183:361.

    Article  CAS  Google Scholar 

  43. Wang YZ, Wang HY, Li XS, Liu DX, Jiang YF, Sun ZH. O3/UV synergistic aging of polyester polyurethane film modified by composite UV absorber. J Nanomater. 2013;2013:1.

    Google Scholar 

  44. Jia RP, Wang CF, Zheng KS, He XY, Huang MS. Preparation, characterization, and properties of CeO2/thermoplastic polyurethane nanocomposites. J Reinf Plast Compos. 2015;34(13):1090.

    Article  CAS  Google Scholar 

  45. Hou WH, Xu L, Qiu JH, Guo CX, Chen LG, Yan QJ. Preparation of ultrafine ceric oxide particles by different methods-I.sol-gel method. J Nan**g Univ (Natural Sciences). 1999;35(4):486.

    CAS  Google Scholar 

  46. Rangari VK, Srivastava DN, Gedanken A. Preparation of ceria nanoparticles embedded in PMMA using sonochemical technique. Mater Lett. 2006;60(29–30):3766.

    Article  CAS  Google Scholar 

  47. Shen ZY, Zheng LC, Li CC, Liu GM, **ao YN, Wu SH, Liu JJ, Zhang B. A comparison of non-isocyanate and HDI-based poly (ether urethane): structure and properties. Polymer. 2019;175:186.

    Article  CAS  Google Scholar 

  48. Kojio K, Furukawa M, Nonaka Y, Nakamura S. Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials. 2010;3(12):5097.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Funding of Jiangsu Educational Committee (No. 19KJB430042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, A., Mao, SW., Chen, TJ. et al. Microstructure and properties of cerium oxide/polyurethane elastomer composites. Rare Met. 40, 3685–3693 (2021). https://doi.org/10.1007/s12598-021-01714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01714-3

Keywords

Navigation