Log in

Microstructure and graphitization behavior of diamond/SiC composites fabricated by vacuum vapor reactive infiltration

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To inhibit the graphitization of diamond under high temperature and low pressure, diamond/SiC composites were firstly fabricated by a rapid gaseous Si vacuum reactive infiltration process. The microstructure and graphitization behavior of diamond in the composites under various infiltration temperatures and holding time were investigated. The thermal conductivity of the resultant materials was discussed. The results show that the diamond-to-graphite transition is effectively inhibited at temperature of as high as 1600 °C under vacuum, and the substantial graphitization starts at 1700 °C. The microstructure of those ungraphitized samples is uniform and fully densified. The inhibition mechanisms of graphitization include the isolation of the catalysts from diamond by a series of protective layers, high pressure stress applied on diamond by the reaction-bonded SiC, and the moderate gas–solid reaction. For the graphitized samples, the boundary between diamond and SiC is coarse and loose. The graphitization mechanism is considered to be an initial detachment of the bilayers from the diamond surfaces, and subsequently flattening to form graphite. The ungraphitized samples present higher thermal conductivity of about 410 W·m−1·K−1 due to the fine interfacial structure. For the graphitized samples, the thermal conductivity decreases significantly to 285 W·m−1·K−1 as a result of high interfacial thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zweben C. Advanced thermal management materials for concentrator photovoltaic arrays. In: Proceedings of the High and Low Concentrator Systems for Solar Electric Applications. V San Diego, California, USA, 2010: 77690.

  2. Tong XC. Thermally Conductive Ceramic Matrix Composites, Advanced Materials for Thermal Management of Electronic Packaging. New York: Springer; 2011. 277.

    Google Scholar 

  3. Guo H, Bai ZH, Zhang XM, Yin FZ, Jia CC, Han YY. Evolution of thermo-physical properties of diamond/Cu composite materials under thermal shock load. Rare Met. 2014;31(2):185.

    Article  Google Scholar 

  4. Han YY, Guo H, Yin FZ, Zhang XM, Chu K, Fan YM. Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles. Rare Met. 2012;31(1):58.

    Article  Google Scholar 

  5. Uspenskaya K, Tormashev U, Fedoceev D. Oxidization and graphitization of diamond in condition of low pressure atmosphere. J Phys Chem. 1982;56(2):495.

    Google Scholar 

  6. Fedoseev DV, Vnukov SP, Bukhovets VL, Anikin BA. Surface graphitization of diamond at high temperatures. Surf Coat Technol. 1986;28(2):207.

    Article  Google Scholar 

  7. Leparoux S, Diot C, Dubach A, Vaucher S. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: a heteroepitaxial growth. Scripta Mater. 2007;57(7):595.

    Article  Google Scholar 

  8. Unifantowicz P, Vaucher S, Lewandowska M, Kurzydłowski KJ. Mechanism of SiC crystals growth on 100 and 111 diamond surfaces upon microwave heating. Mater Charact. 2010;61(6):648.

    Article  Google Scholar 

  9. Yang ZL, He XB, Zhang HM, Qu XH. Fabrication of diamond/SiC composites by PIP Process. Rare Met Mater Eng. 2011;40(S1):383.

    Google Scholar 

  10. Hong SM, Akaishi M, Yamaoka S. High-pressure synthesis of heat-resistant diamond composite using a diamond-TiC0.6 powder mixture. J Am Ceram Soc. 1999;82(9):2495.

    Article  Google Scholar 

  11. Ko Y, Tsurumi T, Fukunaga O, Yano T. High pressure sintering of diamond-SiC composite. J Mater Sci. 2001;36(2):469.

    Article  Google Scholar 

  12. Voronin G, Zerda T, Qian J, Zhao Y, He D, Dub S. Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diam Relat Mater. 2003;12(9):1477.

    Article  Google Scholar 

  13. Ekimov E, Gierlotka S, Gromnitskaya E, Kozubowski J, Palosz B, Lojkowski W, Naletov A. Mechanical properties and microstructure of diamond-SiC nanocomposites. Inorg Mater. 2002;38(11):1117.

    Article  Google Scholar 

  14. Hozer L, Lee JR, Chiang YM. Reaction-infiltrated, net-shape SiC composites. Mater Sci Eng, A. 1995;195:131.

    Article  Google Scholar 

  15. Butenko YV, Kuznetsov VL, Chuvilin AL, Kolomiichuk VN, Stankus SV, Khairulin RA, Segall B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J Appl Phys. 2000;88(7):4380.

    Article  Google Scholar 

  16. Qian J, Pantea C, Voronin G, Zerda T. Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys. 2001;90(3):1632.

    Article  Google Scholar 

  17. Dando NR, Tadayyoni MA. Characterization of polyphasic silicon carbide using surface-enhanced Raman and nuclear magnetic resonance spectroscopy. J Am Ceram Soc. 1990;73(8):2242.

    Article  Google Scholar 

  18. Pantea C, Qian J, Voronin G, Zerda T. High pressure study of graphitization of diamond crystals. J Appl Phys. 2002;91(4):1957.

    Article  Google Scholar 

  19. Nakamura K, Kitajima M. Real-time Raman measurements of graphite under Ar+ irradiation. Appl Phys Lett. 1991;59(13):1550.

    Article  Google Scholar 

  20. Fitzer E, Gadow R. Fiber-reinforced silicon carbide. Am Ceram Soc Bull. 1986;65(2):326.

    Google Scholar 

  21. Park JS, Sinclair R, Rowcliffe D, Stern M, Davidson H. Orientation relationship in diamond and silicon carbide composites. Diam Relat Mater. 2007;16(3):562.

    Article  Google Scholar 

  22. Voronin G, Pantea C, Zerda T, Ejsmont K. Oriented growth of β-SiC on diamond crystals at high pressure. J Appl Phys. 2001;90(12):5933.

    Article  Google Scholar 

  23. Shimono M, Kume S. HIP-sintered composites of C (diamond)/SiC. J Am Ceram Soc. 2004;87(4):752.

    Article  Google Scholar 

  24. Wieligor M, Zerda TW. Surface stress distribution in diamond crystals in diamond-silicon carbide composites. Diam Relat Mater. 2008;17(1):84.

    Article  Google Scholar 

  25. **e J, Chen S, Tse J, de Gironcoli S, Baroni S. High-pressure thermal expansion, bulk modulus, and phonon structure of diamond. Phys Rev B. 1999;60(13):9444.

    Article  Google Scholar 

  26. Weast R. Handbook of Chemistry and Physics—A Ready-Reference Book of Chemical and Physical Data. 55th ed. Cleveland: CRC Press; 1974. 1357.

    Google Scholar 

  27. Varela-Feria FM, Ramírez-Rico J, de Arellano-López AR, Martínez-Fernández J, Singh M. Reaction-formation mechanisms and microstructure evolution of biomorphic SiC. J Mater Sci. 2008;43(3):933.

    Article  Google Scholar 

  28. Herrmann M, Matthey B, Höhn S, Kinski I, Rafaja D, Michaelis A. Diamond-ceramics composites—new materials for a wide range of challenging applications. J Eur Ceram Soc. 2012;32(9):1915.

    Article  Google Scholar 

  29. Davies G, Evans T. Graphitization of diamond at zero pressure and at a high pressure, In: Proceedings of the Royal Society of London Series A, London, 1972, 328(1574):413.

  30. De Vita A, Galli G, Canning A, Car R. A microscopic model for surface-induced diamond-to-graphite transitions. Nature. 1996;379(6565):523.

    Article  Google Scholar 

  31. Yang ZL, He XB, Wu M, Zhang L, Ma A, Liu RJ, Hu HF, Zhang YD, Qu XH. Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration. Ceram Int. 2013;39(3):3399.

    Article  Google Scholar 

  32. Yang Z, He X, Wu M, Zhang L, Ma A, Liu R, Hu H, Zhang Y, Qu X. Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. J Eur Ceram Soc. 2013;33(4):869.

    Article  Google Scholar 

  33. Zhu C, Lang J, Ma N. Preparation of Si–diamond–SiC composites by in situ reactive sintering and their thermal properties. Ceram Int. 2012;38(8):6131.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51274040), the State Basic Research Development Program of China (No. 2011CB606306), and the Fundamental Research Funds for the Central Universities (No. FRF-TP-10-003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n-Bo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZL., Wang, LG., Wang, LM. et al. Microstructure and graphitization behavior of diamond/SiC composites fabricated by vacuum vapor reactive infiltration. Rare Met. 34, 400–406 (2015). https://doi.org/10.1007/s12598-014-0361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0361-9

Keywords

Navigation