Log in

Novel soliton solutions of CNLSEs with Hirota bilinear method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The coupled nonlinear Schrödinger equation in the (2 + 1)-dimensional inhomogeneous PT-symmetric nonlinear coupler is studied. By employing Hirota bilinear method, the soliton solutions are obtained. When the dispersion and phase modulation coefficients adopt the constant, exponential function and hyperbolic functions, respectively, the dynamics of the localized structures including the periodic solitons are analytically investigated. Additionally, the wave propagation collision is discussed. The interactions between two solitons propagating in different directions are analyzed. It has certain significance for stable transmission of the solitons in fiber couplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Xu, S. Zhang, Analytical method for generalized nonlinear Schrödinger equation with time-varying coefficients: lax representation, Riemann–Hilbert problem solutions. Mathematics 10(1043), 10071043 (2022)

    Google Scholar 

  2. A.V. Bourdine, V.A. Burdin, O.G. Morozov, Algorithm for solving a system of coupled non-linear Schrödinger equations by the split-step method to describe the evolution of a high-power femtosecond optical pulse in an optical polarization maintaining fiber. Fibers 10(22), 10030022 (2022)

    Google Scholar 

  3. H.-H. Dong, C.-M. Wei, Y. Zhang, The Darboux transformation and N-soliton solutions of coupled cubic-quintic nonlinear Schrödinger equation on a time-space scales. Frac. Fract. 6(12), 6010012 (2022)

    Google Scholar 

  4. Y. Gu, N. Aminakbari, Bernoulli (G’/G)-expansion method for nonlinear Schrödinger equation with third-order dispersion. Mod. Phys. Lett. B 36(11), 2250028 (2022)

    Article  ADS  Google Scholar 

  5. I.M. Tarikul, M.A. Akbar, A. Hijaz et al., Diverse and novel soliton structures of coupled nonlinear Schrödinger type equations through two competent techniques. Mod. Phys. Lett. B 36(11), 2250004 (2022)

    Article  Google Scholar 

  6. X. Wang, L.-L. Zhang, J.F. Essel, Soliton solution of high-order nonlinear Schrödinger equation based on Ansatz method. Math. Methods Appl. Sci. 45(8), 4428–4450 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Li, T. **a, J. Li, N-soliton solutions of the generalized mixed nonlinear Schrödinger equation through the Riemann–Hilbert method. Mod. Phys. Lett. B. 36(8), 2150627 (2022)

    Article  ADS  Google Scholar 

  8. H.M. Ahmed, A. Darwish, M.F. Sheh et al., Solitons in magneto-optic waveguides for nonlinear Schrödinger’s equation with parabolic-nonlocal law of refractive index by using extended simplest equation method. Opt. Quantum Electron. 54(8), 2203836 (2022)

    Article  Google Scholar 

  9. S.R. Aderyani, R. Saadati, J. Vahidi et al., The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by direct algebraic method and Sine–Gordon expansion method. AIMS Math. 7(6), 10807–10728 (2022)

    Article  MathSciNet  Google Scholar 

  10. Q. Zhang, Y. Zhou, J. Li, Bifurcations and exact solutions of the nonlinear Schrödinger equation with nonlinear dispersion. Int. J. Bifur. Chaos Appl. Sci. Eng. 32(3), 2250041 (2022)

    Article  MATH  Google Scholar 

  11. E.H.M. Zahran, A. Bekir, Multiple accurate-cubic optical solitons to the kerr-law and power-law nonlinear Schrödinger equation without the chromatic dispersion. Opt. Quantam Electron. 54(1), 1–30 (2022)

    Google Scholar 

  12. A. Yusuf, T.A. Sulaiman, A.S. Alshomrani et al., Optical solitons with nonlinear dispersion in parabolic law medium and three-component coupled nonlinear Schrödinger equation. Opt. Quantum Electron. 54(6), 22037946 (2022)

    Article  Google Scholar 

  13. J. Wang, Y. **, X. Gong et al., Generation of random soliton-like beams in a nonlinear fractional Schrödinger equation. Opt. Express 30(5), 8199–8211 (2022)

    Article  ADS  Google Scholar 

  14. X. Hong, M.K.M. Nasution, O.A. Ilhan et al., Nonlinear spin dynamics of a couple of nonlinear Schrödinger’s equations by the improved form of an analytical method. Int. J. Comput. Math. 99(7), 1438–1461 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Song, Y. Lei, D. Cao, Dynamics analysis of higher-order soliton solutions for the coupled mixed derivative nonlinear Schrödinger equation. Acta Mech. Sin. 38(5), 02109082 (2022)

    Article  Google Scholar 

  16. J. Zhang, Modulation instability in fractional Schrödinger equation with cubic-quintic nonlinearity. J. Nonlinear Opt. Phys. Mater. 31(4), 2250019 (2022)

    Article  ADS  Google Scholar 

  17. X. Wang, Hu. **aoxiao, Interactions among periodic optical solitons for the variable coefficient coupled nonlinear Schrodinger equations. Optik 226, 155621 (2021)

    Article  Google Scholar 

  18. S. Arshed, R. Nauman, J. Ahmad et al., Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation. Int. J. Geom. Methods Mod. Phys. (2021). https://doi.org/10.1142/s0219887822501493

    Article  Google Scholar 

  19. R. Nauman, J. Ahmad, B.A. Rashid et al., Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber. Int. J. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1515/ijnsns-2021-0165

    Article  MATH  Google Scholar 

  20. H.M. Baskonus, W. Gao, H. Rezazadeh et al., New classifications of nonlinear Schrödinger model with group velocity dispersion via new extended method. Results Phys. 31, 104910 (2021)

    Article  Google Scholar 

  21. A. Bonsal, A. Biswas, Q. Zhou et al., Lie symmetry analysis for cubic-quartic nonlinear Schrodinger’s equation. Optik 169, 12–15 (2018)

    Article  ADS  Google Scholar 

  22. A. Biswas, M. Ekici, A. Sonmezoglu et al., Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. Optik 182, 897–906 (2019)

    Article  ADS  Google Scholar 

  23. M. Ekic, M. Mirzazadeh, A. Biswas et al., Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik 131, 964–976 (2017)

    Article  ADS  Google Scholar 

  24. A. Biswas, H. Rezazadeh, M. Belic et al., Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes. Optik 165, 288–294 (2018)

    Article  ADS  Google Scholar 

  25. M. Mirzazadeh, M. Ekici, A. Biswas et al., “Exact solitons to generalized resonant dispersive nonlinear Schrodinger’s equation with power law nonlinearity. Optik 130, 178–183 (2017)

    Article  ADS  Google Scholar 

  26. M. Ekici, M. Mirzazadeh, A. Biswas et al., Dark and singular optical solitons with Kundu–Eckhaus equation by extended trial equation method and extended G’/G-expansion scheme. Optik 127(22), 10490–10497 (2016)

    Article  ADS  Google Scholar 

  27. Y. Yıldırım, A. Biswas, Ja’afar A, Mohamad J et al., Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 16, 102913 (2020)

    Article  Google Scholar 

  28. W.-j Liu, Y.-j Zhang, A. Biswas et al., Dromion-like soliton interactions for nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96(1), 729–736 (2019)

    Article  MATH  Google Scholar 

  29. X.-Y. Liu, W.-J. Liu, A. Biswas et al., Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrodinger equation. Nonlinear Dyn. 96(2), 801–809 (2019)

    Article  MATH  Google Scholar 

  30. M. Ekici, A. Sonmezoglu, A. Biswas et al., Optical solitons in (2+1)-dimensions with Kundu–Mukherjee–Naskar equation by extended trial function scheme. Chin. J. Phys. 57, 72–77 (2019)

    Article  Google Scholar 

  31. E.M.E. Zayed, R.M.A. Shohib, A. Biswas et al., Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukrain. J. Phys. Opt. 22(1), 38–49 (2021)

    Article  ADS  Google Scholar 

  32. A.R. Adem, B.P. Ntsime, A. Biswas et al., Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukrain. J. Phys. Opt. 22(2), 83–86 (2021)

    Article  ADS  Google Scholar 

  33. A. Biswas, J. Edoki, P. Guggilla et al., Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi-inverse variational principle. Ukrain. J. Phys. Opt. 22(3), 123–127 (2021)

    Article  ADS  Google Scholar 

  34. Y. Yildirim, A. Biswas, P. Guggilla et al., Optical solitons in fibre Bragg gratings with third- and fourth- order dispersive reflectivities. Ukrain. J. Phys. Opt. 22(4), 239–254 (2021)

    Article  ADS  Google Scholar 

  35. Y. Yildirim, A. Biswas, A. Dakova et al., Cubic-quartic optical solitons having quadratic-cubic non- linearity by sine-Gordon equation approach. Ukrain. J. Phys. Opt. 22(4), 255–269 (2021)

    Article  ADS  Google Scholar 

  36. E.M.E. Zayed, R.M.A. Shohib, A. Biswas et al., Optical solitons in the Sasa-Satsuma model with multiplicative noise via Ito calculus”. Ukrain. J. Phys. Opt. 23(1), 9–14 (2022)

    Article  Google Scholar 

  37. Y. Yildirim, A. Biswas, S. Khan et al., Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law of nonlinear refractive index. Ukrain. J. Phys. Opt. 23(1), 24–29 (2022)

    Article  Google Scholar 

  38. O. Gonzalez-Gaxiola, A. Biswas, Y. Yildirim et al., Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–Adomian decomposition. Ukrain. J. Phys. Opt. 23(2), 68–76 (2022)

    Article  ADS  Google Scholar 

  39. A.A. Al Qarni, A.M. Bodaqah, A. Biswas et al., Cubic-quartic optical solitons for Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukrain. J. Phys. Opt. 23(4), 228–242 (2022)

    Article  Google Scholar 

  40. S.-L. Liu, W.-z Wang, Exact soliton solutions of the extended nonlinear Schrödinger equation by Hirota’s method. Chin. J. Quantum Electron. 14(2), 144–149 (1997)

    MathSciNet  Google Scholar 

  41. H.-Y. Wei, Y.-Y. Wang, Q.-Y. Chen, Application of Hirota’s method to soliton equaitons. J. ZhouKou Normal Univ. 27(2), 12–15 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofu Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Data availability

No data were used to support this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. Novel soliton solutions of CNLSEs with Hirota bilinear method. J Opt 52, 1602–1607 (2023). https://doi.org/10.1007/s12596-022-01065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01065-x

Keywords

Navigation