Log in

A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Light is established as a successful carrier in quantum optical computing and data processing, as photon always maintains the quantum phenomenon of a particle. In this connection it is always associated with definite wave function (eigenstate) and eigenvalues of energy, polarization, momentum, etc. Since last few years, different research works are seen in the field of quantum computing, where light is used as a carrier signal at different capacities, because of several hidden advantages of light. To do these, scientists used the optical/optoelectronic switches in proper method. In this paper, the authors have studied different applications of light in the area of quantum computing, where the stream of photon flow are modulated by the use of high-speed optical/optoelectronic switches. In this review study the applications of electro-optic Pockels cell-based switches, semiconductor optical amplifier (SOA)-based switches and photonic band gap crystal-based switches in the domain of quantum optical computing and information processing are included. These switches are high speed in nature and can act on the quantum state of light to make necessary changes. Here only some important areas in this field are covered, though there are a number of research outcomes which are not discussed because of space limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Mukhopadhyay, Role of Optics in superfast information processing. Indian J. Phys. 84(8), 1069 (2010)

    Article  ADS  Google Scholar 

  2. C. Vitelli, N. Spagnolo, L. Aparo et al., Joining the quantum state of two photons into one. Nat. Photonics 7, 521–526 (2013)

    Article  ADS  Google Scholar 

  3. A. Yariv, P. Yeh, Photonics – optical electronics in modern communication (Oxford University Press, New York, 2007, 6th edn.)

  4. A. Ghatak, K. Thyagarajan, Optical electronics (Cambridge University Press, New Delhi, 2008)

    Google Scholar 

  5. S. Mukhopadhyay, D.N. Das, P.P. Das, P. Ghosh, Implementation of all-optical digital matrix multiplication scheme with nonlinear material. Opt. Eng. 40, 1998–2002 (2001)

    Article  ADS  Google Scholar 

  6. S. Mukhopadhyay, A. Basuray, A.K. Datta, New coding scheme for addition and subtraction using the modified signed-digit number representation in optical computation. Appl. Opt. 27(8), 1375–1376 (1988)

    Article  ADS  Google Scholar 

  7. S. Dutta, S. Mukhopadhyay, Alternating approach of implementing frequency encoded all-optical logic gates and flip-flop using semiconductor optical amplifier. Optik 122(12), 1088–1094 (2011)

    Article  ADS  Google Scholar 

  8. J.N. Roy, A.K. Maiti, S. Mukhopadhyay, Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture. Chinese Opt. Lett. 4(8), 483–486 (2006)

    ADS  Google Scholar 

  9. K.R. Chowdhury, S. Mukhopadhyay, A new method of binary addition scheme with massive use of non-linear material based system. Chin Opt. Lett. 1(4), 241–242 (2003)

    ADS  Google Scholar 

  10. S. Sen, S. Mukhopadhyay, Reduction of Vπ voltage of an electro-optic modulator by jointly using oblique end-cutting and multi-rotation. Opt. Laser Technol. 59, 19–23 (2014)

    Article  ADS  Google Scholar 

  11. S. Lakshan, D. Saha, S. Mukhopadhyay, Optical scheme of obtaining highest transmission factor in case of KDP based electro-optic crystal by the adjustment of suitable biasing voltage and number of feedback passing. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0112

    Article  Google Scholar 

  12. S. Lakshan, S. Mukhopadhyay, All-optical method for measuring the electrical parameters of passive electronic elements with active use of Pockels cells. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00858-4

    Article  Google Scholar 

  13. S. Lakshan, S. Mukhopadhyay (2021), Intensity and voltage controlled phase switching of light by joint effort of kerr and pockels material. In: Singh, K., Gupta, A.K., Khare, S., Dixit, N., Pant, K. (eds) ICOL-2019. Springer Proceedings in Physics, 258. Springer, Singapore. https://doi.org/10.1007/978-981-15-9259-1_159

  14. M. Mandal, S. Mukhopadhyay, Analytical investigation to achieve the highest phase difference between two orthogonal components of light in lithium niobate based electro-optic system. Optoelectron. Lett. 16(5), 0338–0342 (2020)

    Article  ADS  Google Scholar 

  15. M. Mandal, R. Maji, S. Mukhopadhyay, Increase of side band powers in parallel phase modulation by lithium niobate based electro-optic crystal. Braz. J. Phys. 51(3), 738–745 (2021)

    Article  ADS  Google Scholar 

  16. I. Goswami, M. Mandal, S. Mukhopadhyay, Alternative study of using electro-optic Pockels cell for massive reduction in the intensity of central frequency by multi-passing technique. J. Opt. (2021). https://doi.org/10.1007/s12596-021-00779-8

    Article  Google Scholar 

  17. J.A. Jones, Nested composite NOT gates for quantum computation. Phys. Lett. A 377(40), 2860–2862 (2013)

    Article  ADS  MATH  Google Scholar 

  18. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarization encoding. IET Opto-electronic. 12(4), 176–179 (2018)

    Article  Google Scholar 

  19. S. Dey, S. Mukhopadhyay, Approach of implementing phase encoded quantum square root of NOT gate. Electron. Lett. 53(20), 1375–1377 (2017)

    Article  ADS  Google Scholar 

  20. S. Dey, S. Mukhopadhyay, All-optical integrated square root of pauli-Z gates using polarization and phase encoding. J. Opt. 48, 520–526 (2019)

    Article  Google Scholar 

  21. B. Sarkar, S. Mukhopadhyay, All optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46(2), 143–148 (2017)

    Article  Google Scholar 

  22. M.N. Sarfaraj, S. Mukhopadhyay, All-optical scheme for implementation of tristate Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett. 17(12), 1673–1905 (2021)

    Article  Google Scholar 

  23. M.N. Sarfaraj, S. Mukhopadhyay, Development of tri-state quantum optical phase shift gate using electro-optic modulator with the joint uses of phase and intensity modulation, in: XLIV OSI Symposium Frontiers in Optics and Photonics, IIT Delhi, 24–27 September (2021)

  24. M. N. Sarfaraj, S. Mukhopadhyay, An alternative proposal for implementation of Quantum optical oscillator using tristate Pauli-Z gate, MDCCT 2020, The Univ. of Burdwan, 37–39, ISBN: 978–81–955389–3–5

  25. M. Mandal, I. Goswami, S. Mukhopadhyay, Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00869-1

    Article  Google Scholar 

  26. M. Mandal, S. Mukhopadhyay, Photonic scheme for implementing quantum square root controlled-Z gate using phase and intensity encoding of light. IET Opt. Electron. 15, 52–60 (2021)

    Article  Google Scholar 

  27. M. Mandal, S. Mukhopadhyay, Implementation of quantum optical phase shift gate adopting multi-passing technique in Lithium Niobate based electro-optic crystal. ICOL-2019, Springer Proceedings in Physics. 258, 687–690 (2021)

  28. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, High-speed linear optics quantum computing using active feed-forward. Nature 445(7123), 65–69 (2007)

    Article  ADS  Google Scholar 

  29. G. Vallone, E. Pomarico, F. De Martini, P. Mataloni, Active one-way quantum computation with two-photon four-qubit cluster states. Phys. Rev. Lett. 100, 160502 (2008)

    Article  ADS  Google Scholar 

  30. K. Marshall, C.S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrookand, U.L. Andersen, Continuous-variable quantum computing on encrypted data. Nature Commun. 7, 13795 (2016)

    Article  ADS  Google Scholar 

  31. Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, M. Lončar, On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021)

    Article  ADS  Google Scholar 

  32. H.H. Lu, J.M. Lukens, N.A. Peters, O.D. Odele, D.E. Leaird, A.M. Weiner, P. Lougovski, Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018)

    Article  ADS  Google Scholar 

  33. F.Y. Zhang, C.P. Yang, Generation of generalized hybrid entanglement in cavity electro–optic systems. Quantum Sci. Technol. 6(2), 025003 (2021)

    Article  ADS  Google Scholar 

  34. P. Imany, O.D. Odele, J.V. Jose, A.D.E. Leaird, A.M. Weiner, Characterization of coherent quantum frequency combs using electro-optic phase modulation. Phys. Rev. A. 97(1), 013813 (2018)

    Article  ADS  Google Scholar 

  35. K.H. Luo, S. Brauner, C. Eigner, P.R. Sharapova, R. Ricken, T. Meier, H. Herrmann, C. Silberhorn, Non-linear integrated quantum electro-optic circuits. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aat1451

    Article  Google Scholar 

  36. F. Eltes, G.E. Villarreal-Garcia, D. Caimi, H. Siegwart, A.A. Gentile, A. Hart, P. Stark, G.D. Marshall, M.G. Thompson, J. Barreto, J. Fompeyrine, S. Abel, An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020)

    Article  ADS  Google Scholar 

  37. E. Lomonte, M.A. Wolff, F. Beutel, S. Ferrari, C. Schuck, W.H.P. Pernice, F. Lenzini, Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021)

    Article  ADS  Google Scholar 

  38. S. Dutta, S. Mukhopadhyay, A new alternative approach of all optical frequency encodedclocked S-R flip-flop exploiting the nonlinear character of semiconductor optical amplifiers. Optik-Int. J. Light Electron Opt. 123(22), 2082–2084 (2012)

    Article  Google Scholar 

  39. M. Connelly, Semiconductor Optical Amplifiers (Springer Science & Business Media, Berlin, 2002)

    Google Scholar 

  40. N.K. Dutta, Q. Wang, G. Zhu, J. Jaques, A.B. Piccirilii, J. Leuthold, semiconductor optical amplifiers-functional applications. J. Opt. 33(4), 197–219 (2004)

    Article  Google Scholar 

  41. S. Mukhopadhyay, S. Dey, S. Saha, Photonics: A Dream of Modern Technology PhotonicsandFiber Optics (CRC Press, Boca Raton, 2019)

    Google Scholar 

  42. S. Dutta, S. Mukhopadhyay, Alternating approach of implementing frequencyen coded all-optical logic gates and flip-flop using semiconductor optical amplifier. Optik-Int. J. Light Electron Opt. 122(12), 1088–1094 (2011)

    Article  Google Scholar 

  43. A. Kotb, K. Zoiros, C. Guo, 320 Gb/s all-optical XOR gate using semiconductor opticalamplifier-MachZehnderinterferometeranddelayedinterferometer. Photonic Netw. Commun. 38(1), 177–184 (2019)

    Article  Google Scholar 

  44. S.K. Garai, A scheme of develo** frequency encoded tristate-optical logic operationsusingsemiconductoropticalamplifier. J. Mod. Opt. 57(6), 419–428 (2010)

    Article  ADS  Google Scholar 

  45. S.K. Garai, A. Pal, S. Mukhopadhyay, All-optical frequency-encoded inversion operationwith tristate logic using reflecting semiconductor optical amplifiers. Optik-Elsevier 121(16), 1462–1465 (2010)

    Article  Google Scholar 

  46. X. Chen et al., Study on 100-Gb/s reconfigurable all-optical logic gates using a singlesemiconductoropticalamplifier. Opt. Express 24(26), 30245–30253 (2016)

    Article  ADS  Google Scholar 

  47. D.E. Fouskidis, K.E. Zoiros, A. Hatziefremidi, Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–15 (2021)

    Article  Google Scholar 

  48. S.K. Chandra, P.P. Sarkar, S. Biswas, S. Mukhopadhyay, All- optical phase encoded 4-to-1 phase multiplexer using four wave mixing in semiconductor optical amplifier. Optik. 125(23), 6953–6957 (2014). https://doi.org/10.1016/j.ijleo.2014.08.064

    Article  ADS  Google Scholar 

  49. K. Datta, I. Sengupta, All optical reversible multiplexer design using Mach-Zehnder Interferometer, in 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, 05–09 January (2014) https://doi.org/10.1109/VLSID.2014.100.

  50. R. Kaler, R.S. Kaler, Implentation of optical encoder and multiplexer using Mach-Zehnder interferometer. Optik 122(15), 1399–1405 (2011). https://doi.org/10.1016/j.ijleo.2010.09.030

    Article  ADS  Google Scholar 

  51. S. Saha, P. De, S. Mukhopadhyay, All optical frequency encoded quaternary memory unit using symmetric configuration of MZI-SOA. Opt. Laser Technol. (2020). https://doi.org/10.1016/j.optlastec.2020.106386

    Article  Google Scholar 

  52. S. Saha, S. Dey, S. Mukhopadhyay, All optical wavelength encoded 1-bit memory unit exploiting the nonlinear character of asymmetric mzi-soa switch, in Poster presentation in The International Conference on Fiber Optics and Photonics (Photonics 2016), 4th to 8th December, (2016). https://doi.org/10.1364/PHOTONICS.2016.Th3A.32.

  53. R. Clavero, F. Ramos, J.M. Martinez, J. Marti, All-optical flip-flop based on a single SOA-MZI. IEEE Photon. Technol. Lett. 17(4), 843–845 (2005). https://doi.org/10.1109/LPT.2004.842797

    Article  ADS  Google Scholar 

  54. J. Wang, G. Meloni, G. Berrettini, L. Potì, A. Bogoni, All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates. IEEE J. Sel. Top. Quantum Electron. 16(5), 1486–1494 (2010). https://doi.org/10.1109/JSTQE.2009.2039199

    Article  ADS  Google Scholar 

  55. P. Bakopoulos, K. Vyrsokinos, D. Fitsios, T. Alexoudi, D. Apostolopoulos, H. Avramopoulos, A. Miliou, N. Pleros, All-optical T-flip-flop using a single SOA-MZI-based latching element. IEEE Photon. Technol. Lett. 24(9), 748–750 (2012). https://doi.org/10.1109/LPT.2012.2187779

    Article  ADS  Google Scholar 

  56. T. Chattopadhyay, C. Reis, P. André, A. Teixeira, Theoretical analysis of all-optical clocked D flip-flop using a single SOA assisted symmetric MZI. Opt. Commun. 285(9), 2266–2275 (2012). https://doi.org/10.1016/j.optcom.2011.12.103

    Article  ADS  Google Scholar 

  57. S. Saha, S. Biswas, S. Mukhopadhyay, Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach-Zehnder interferometer-based semiconductor optical amplifier. IET Optoelectron. 11(5), 201–207 (2017). https://doi.org/10.1049/iet-opt.2016.0078

    Article  Google Scholar 

  58. A.K. Maiti, J.N. Roy, S. Mukhopadhyay, All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree net architecture. Chin. Opt. Lett. 5(8), 480–483 (2007)

    ADS  Google Scholar 

  59. S. Saha, S. Biswas, S. Mukhopadhyay, An alternative approach for binary to decimal conversion of frequency encoded optical data using MZI-SOA Switch. J. Opt. (2021). https://doi.org/10.1007/s12596-021-00786-9

    Article  Google Scholar 

  60. S. Mukhopadhyay, An optical conversion systems from binary to decimal and decimal to binary. Opt. Commun. 76(5–6), 309–312 (1990). https://doi.org/10.1016/0030-4018(90)90257-T

    Article  ADS  Google Scholar 

  61. S. Dutta, S. Mukhopadhyay, All-optical approach for conversion of a binary number having a fractional part to its decimal equivalent and vice-versa. Opt. Photonics Lett. 03(01), 51–59 (2010). https://doi.org/10.1142/S1793528810000104

    Article  Google Scholar 

  62. K. Bordoloi, T. Theresal, S. Prince, Design of all optical reversible logicgates, in International Conference on Communication and Signal Processing, 3–4 (2014)

  63. M. Nazari, M. Haghparast, Novel design of all-optical reversible logic gates using Mach-Zehnderinterferometerinthefieldofnanotechnology. Aust. J. Basic Appl. Sci. 5(12), 923–929 (2011)

    Google Scholar 

  64. S. Shrivastavaet. al., All-optical frequency-encoded Toffoli gate. J. Opt.Commun. (2021)

  65. V. Arun, A.K. Singh, N.K. Shukla, D.K. Tripathi, Design and performance analysis of SOA–MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Opt. Quantum Electron. 48, 445 (2016). https://doi.org/10.1007/s11082-016-0711-y

    Article  Google Scholar 

  66. S. Bosu, B. Bhattacharjee, All-optical dibit-based Feynman gate using reflective semiconductor optical amplifier with frequency encoding scheme. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00875-3

    Article  Google Scholar 

  67. D. Mandal, S. Mandal, S.K. Garai, Alternativeapproachofdevelo**all-opticalFredkinandToffoli gates. Opt. LaserTechnol. 72, 33–41 (2015)

    ADS  Google Scholar 

  68. S.K. Garai, A novel method of develo** all optical frequency encoded Fredkin gates. Opt. Commun. 313, 441–447 (2014)

    Article  ADS  Google Scholar 

  69. N.F. Ghazali, M.H.A. Wahid, N.A.M. Ahmad Hambali, N. Juhari, S.M. Zahari, M.M. Shahimin, Characterization of all-optical Tofolli and Peres gates employing optimized SOA-NOLM. AIP Conf. Proc. 2203, 020067 (2020). https://doi.org/10.1063/1.5142159

    Article  Google Scholar 

  70. G.K. Maity, J.N. Roy, S.P. Maity, Mach-Zehnder interferometer based all-optical peres gate. Adv. Comput. Commun. (2011). https://doi.org/10.1007/978-3-642-22720-2_25

    Article  Google Scholar 

  71. K. Mukherjee, K. Maji, A. Raja, All-optical Feynman gate using reflective semiconductor optical amplifiers and binary to gray code converter. Adv. Appl. Math. Sci. 19(9), 919–929 (2019)

    Google Scholar 

  72. T. Chattopadhyay, An all-optical equalizer SWAP gate (ESG). Semicond. Sci. Technol. 36(08), 5017 (2021). https://doi.org/10.1088/1361-6641/abf3a6

    Article  Google Scholar 

  73. C. Taraphdar, T. Chattopadhyay, J.N. Roy, Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010). https://doi.org/10.1016/j.optlastec.2009.06.017

    Article  ADS  Google Scholar 

  74. G.K. Maity, S.P. Maity, J.N. Roy, TOAD-based Feynman and Toffoli Gate, in Second International Conference on Advanced Computing & Communication Technologies (2012). https://doi.org/10.1109/ACCT.2012.116.

  75. J.D. Joannopoulos, S.G. Jhonson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  76. L. Pedraza, O.V. Neto, A review on photonic crystal logic gates. J. Integr. Circuits Syst. 16(1), 1–13 (2021). https://doi.org/10.29292/jics.v16i1.478

    Article  Google Scholar 

  77. E.H. Shaik, N. Rangaswamy, Single photonic crystal structure for realization of NAND and NOR logic functions by cascading basic gates. J. Comput. Electron. 17, 337–348 (2018). https://doi.org/10.1007/s10825-017-1081-9

    Article  Google Scholar 

  78. Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284(14), 3528–3533 (2011). https://doi.org/10.1016/j.optcom.2011.03.069

    Article  ADS  Google Scholar 

  79. M. Danaie, H. Kaatuzian, Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt. Quant. Electron. 44, 27–34 (2011). https://doi.org/10.1007/s11082-011-9527-y

    Article  Google Scholar 

  80. T.A. Moniem, All-optical S-R flip flop using 2-D photonic crystal. Opt. Quant. Electron. 47, 2843–2851 (2015). https://doi.org/10.1007/s11082-015-0173-7

    Article  Google Scholar 

  81. A. Maleki, Optical filter based on point defects in 2D photonic crystal structure. J. Artif. Intell. Electr. Eng. 2(7), 49–65 (2013)

    ADS  MathSciNet  Google Scholar 

  82. S.C. Xavier, B.E. Carolin, A.P. Kabilan, W. Johnson, Compact photonic crystal integrated circuit for all-optical logic operation. IET Opto-electron. 10(4), 142–147 (2016). https://doi.org/10.1049/iet-opt.2015.0072

    Article  Google Scholar 

  83. R.M. Younis, N.F.F. Areed, S.S.A. Obayya, Fully integrated AND and OR optical logic gates. IEEE Photonics Technol. Lett. 26(19), 1900–1903 (2014). https://doi.org/10.1109/LPT.2014.2340435

    Article  ADS  Google Scholar 

  84. M. Fox, Quantum Optics: An Introduction (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  85. K. Abbasian, R. Sadeghi, P. Sadeghi, Design of optical tunable CNOT (XOR) and XNOR logic gates based on 2D-photonic crystal cavity using electro-optic effect. Digest J. Nanomater. Biostruct. (2016) https://doi.org/10.48550/ar**v.1602.07429

  86. S. Salemian, S. Mohammadne, Quantum hadamard gate implementation using planar lightwave circuit and photonic crystal structures. Am. J. Appl. Sci. 5(9), 1144–1148 (2008). https://doi.org/10.3844/ajassp.2008.1144.1148

    Article  Google Scholar 

  87. R.K. Ramakrishnan, S. Talabatulla, Photonic crystal based quantum Hadamard gate, in Proceedings of SPIE 7420, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications III, 74200R (2009). https://doi.org/10.1117/12.824192

  88. L. E. P. Caballero, J. P. Vasco, P. S. S. Guimarães, O. P. V. Neto, All-optical Majority and Feynman gates in photonic crystals, in 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro). 1–4 (2015). Doi: https://doi.org/10.1109/SBMicro.2015.7298150.

  89. E. Veisi, M. Seifouri, S. Olyaee, Design and numerical analysis of multifunctional photonic crystal logic gate. Opt. Laser Technol. 151, 108068 (2022). https://doi.org/10.1016/j.optlastec.2022.108068

    Article  Google Scholar 

  90. D.G.S. Rao, S. Swarnakar, S. Kumar, Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits. Appl. Opt. 59, 11003–11012 (2020)

    Article  ADS  Google Scholar 

  91. M.H. Kashtiban, H.A. Banaei, M.B. Tavakoli et al., Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonator. J. Comput. Electron. 19, 1281–1287 (2020)

    Article  Google Scholar 

  92. P. De, S. Ranwa, S. Mukhopadhyay, Implementation of all-optical Toffoli gate by 2D Si–air photonic crystal. IET Optoelectron. 15(3), 139–148 (2021)

    Article  Google Scholar 

  93. P. De, S. Ranwa, S. Mukhopadhyay, Intensity and phase encoding for realization of integrated Pauli X, Y and Z gates using 2D photonic crystal. Opt. Laser Technol. 152, 108141 (2022). https://doi.org/10.1016/j.optlastec.2022.108141

    Article  Google Scholar 

  94. D.G. Angelakis, M.F. Santos, V. Yannopapas, A. Ekert, A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A. 362(5–6), 377–380 (2007). https://doi.org/10.1016/j.physleta.2006.10.046

    Article  ADS  Google Scholar 

  95. M.H. Kashtiban, H.A. Banaei, M.B. Tavakoli, R.S. Nadooshan, All-optical Fredkin gate using photonic-crystal-based nonlinear cavities. Appl. Opt. 59, 635–641 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support in the form of fellowship to some of the authors from Govt. of West Bengal, University Grants Commission (Govt. of India), DST INSPIRE scheme of Department of Science and Technology (Govt. of India) and CAS program of the Department of Physics, The University of Burdwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., De, P., Lakshan, S. et al. A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing. J Opt 52, 603–611 (2023). https://doi.org/10.1007/s12596-022-01045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01045-1

Keywords

Navigation