Log in

Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The main attention of this work focuses on studying the bifurcations and dispersive optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. First of all, with the help of bifurcation method of planar dynamical systems, the system’s Hamiltonian and the orbits phase portraits have been found. As you can see, we construct the dark and singular solitons to this system. In addition to, some other optical solitons are derived by using the polynomial complete discriminant method and computer algebra with symbolic computation. In particular, it is worth to noting that some of the solutions which have been obtained in this work are new and not available in the known references. As a consequence, the obtained optical soliton solutions substantially improve or complement the corresponding conditions in the known references. Finally, in order to understand mechanisms of complex physical phenomena and dynamical processes for this system, we draw the two-dimensional and three-dimensional graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Tang, Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)

    ADS  Google Scholar 

  2. L. Tang, S.P. Chen, The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt. Quant. Electron 54, 105 (2022)

    Google Scholar 

  3. A. Biswas, Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 49, 580–583 (2020)

    Google Scholar 

  4. L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks. Optik 262, 169276 (2022)

    ADS  Google Scholar 

  5. L. Tang, S.P. Chen, Traveling wave solutions for the diffusive Lotka-Volterra equations with boundary problems. Appl. Math. Comput. 413, 126599 (2022)

    MathSciNet  MATH  Google Scholar 

  6. L. Tang, Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 265, 169555 (2022)

    ADS  Google Scholar 

  7. M.E. Elsayed, M.A. Reham, A. Biswas et al., Dispersive solitons in optical fibers and DWDM networks with Schrödinger-Hirota equation. Optik 199, 163214 (2019)

    ADS  Google Scholar 

  8. N.A. Kudryashov, On traveling wave solutions of the Kundu-Eckhaus equation. Optik 224, 165500 (2019)

    ADS  Google Scholar 

  9. N.A. Kudryashov, Solitray wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)

    MathSciNet  MATH  Google Scholar 

  10. A. Biswas, A. Sonmezoglu, M. Ekici et al., Optical solitons perturbation with Kudryashov’s equation by F-expansion. Optik 199, 163338 (2019)

    ADS  Google Scholar 

  11. A. Biswas, M. Asma, P. Guggilla et al., Optical solitons with Kudryashov’s equation by Semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020)

    MathSciNet  MATH  Google Scholar 

  12. A. Biswas, M. Ekici, A. Sonmezoglu et al., Optical solitons perturbation with Kudryashov’s equation by extended trail function. Optik 202, 163290 (2020)

    ADS  Google Scholar 

  13. L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fract. 161, 112383 (2022)

    MATH  Google Scholar 

  14. L.X. Du, Y.H. Sun, D.S. Wu, Bifurcations and solutions for the generalized nonlinear Schrödinger equation. Phys. Lett. A 383, 126028 (2019)

    MATH  Google Scholar 

  15. A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity. Optik 172, 847–850 (2020)

    ADS  Google Scholar 

  16. A. Biswas, Dispersion-managed solitons in optical fibres. J. Opt. A Pure Appl. Opt. 4, 84–97 (2001)

    ADS  Google Scholar 

  17. M. Mirzazadeh, M. Eslami, A. Biswas, Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrödinger’s equation with power law nonlinearity. Optik 125, 4246–4256 (2014)

    ADS  Google Scholar 

  18. A. Biswas, Y. Yakup, Y. Emrullah et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes. Optik 163, 126–136 (2018)

    ADS  Google Scholar 

  19. Q. Zhou, Y. Zhong, M. Mirzazadeh et al., Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26, 204–210 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  20. S. Arshed, A. Biswas et al., Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques. Chin. J. Phys. 56, 2879–2886 (2018)

    Google Scholar 

  21. A. Biswas, K.R. Khan et al., Bright and dark solitons in optical metamaterials. Optik 125, 3299–3302 (2014)

    ADS  Google Scholar 

  22. G. Ebadi, A. Yildirim, A. Biswas, Chiral solutions with bohm potential using \(\frac{G^{\prime }}{G}\) method and Exp-function method. Rom. Rep. Phys. 64, 357–366 (2012)

    Google Scholar 

  23. Q. Zhou, Q.P. Zhu et al., Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Roman. Acade. Seri A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  24. A. Biswas, D. Milovic, R. Kohl, Optical soliton perturbation in a log-law medium with full nonlinearity by He’s semi-inverse variational principle. Inverse Problem Sci. Eng. 20, 227–232 (2012)

    MATH  Google Scholar 

  25. Q. Zhou, Q.P. Zhu et al., Thirring optical solitons in birefringent fibers with spatio-temporal dispersion and Kerr law nonlinearity. Laser Phys. 25, 015402 (2014)

    ADS  Google Scholar 

  26. A. Biswas, M.Z. Ullah et al., Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik 139, 16–19 (2017)

    ADS  Google Scholar 

  27. E. Tapkara, D. Milovic, A.K. Sarma, Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 15, 2320–2330 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  28. M. Saha, A.K. Sarma, A. Biswas, Dark optical solitons in power law media with time-dependent coefficients. Phys. Lett. A 373, 4438–4441 (2009)

    ADS  MATH  Google Scholar 

  29. A.H. Bhrawy, A.A. Alshaery, E.M. Hilal et al., Optical solitons in birefringent fibers with spatio-temporal dispersion. Optik 125, 4935–4944 (2014)

    ADS  Google Scholar 

  30. S. Arshed, N. Raza, Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion. Chin. J. Phys. 63, 314–324 (2020)

    MathSciNet  Google Scholar 

  31. N. Raza, A. Jhangeer, H. Rezazadeh et al., Explicit solutions of the (2+1)-dimensional Hirota-Maccari system arising in nonlinear optics. Int. J. Mod. Phys. B 33, 1950360 (2019)

    ADS  MathSciNet  Google Scholar 

  32. A.R. Butt, M. Abdyllah, N. Raza, Dynamics of optical solitons incorporating Kerr dispersion and self-frequency shift. Mod. Phys. Lett. B 33, 1950220 (2019)

    ADS  MathSciNet  Google Scholar 

  33. J. Atai, B. Malomed, Spatial solitons in a medium composed of self-focusing and self-defocussing layers. Phys. Lett. A 298, 141–148 (2002)

    ADS  Google Scholar 

  34. J. Atai, B. Malomed, Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 342, 404–412 (2005)

    ADS  MATH  Google Scholar 

  35. S.A. Chowdhury, J. Atai, Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity. IEEE J. Quant. Electron. 50, 458–465 (2014)

    ADS  Google Scholar 

  36. S.A. Chowdhury, J. Atai, Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. J. Mod. Opt. 63, 2238–2245 (2016)

    ADS  Google Scholar 

  37. S.A. Chowdhury, J. Atai, Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. Sci. Rep. 7, 4021 (2017)

    ADS  Google Scholar 

  38. J. Atai, B. Malomed, Families of Bragg grating solitons in a cubicCquintic medium. Phys. Lett. A 284, 247–252 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  39. D. Roston, J. Atai, B. Malomed, Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J. Opt. A 10, 085105 (2008)

    ADS  Google Scholar 

  40. A. Biswas, M. Ekici, A. Sonmezoglu et al., Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method. Optik 182, 88–94 (2019)

    ADS  Google Scholar 

  41. A. Darwish, E.A. El-Dahab, H. Ahmed et al., Optical solitons in fiber Bragg gratings via modified simple equation. Optik 203, 163886 (2020)

    ADS  Google Scholar 

  42. A. Biswas, J. Vega-Guzman, M.F. Mahmood et al., Solitons in optical fiber Bragg gratings with dispersive reflectivity. Optik 182, 119–123 (2019)

    ADS  Google Scholar 

  43. Y. Yildirim, A. Biswas, S. Khan et al., Optical solitons in fiber Bragg gratings with dispersive reflectivity by sine-Gordon equation approach. Optik 237, 166684 (2021)

    ADS  Google Scholar 

  44. A. Arnous, Q. Zhou, A. Biswas et al., Optical solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 422, 127797 (2022)

    MathSciNet  MATH  Google Scholar 

  45. S.N. Chow, J.K. Hale, Method of Bifurcation Theory (Springer, New York, 1982)

    MATH  Google Scholar 

  46. J.B. Li, H.H. Dai, On the study of singular nonlinear traveling wave equations: dynamical system approach (Science Press, Bei**g, 2007)

    Google Scholar 

  47. J.B. Li, Singular nonlinear traveling wave equations: bifurcation and exact solutions (Science Press, Bei**g, 2013)

    Google Scholar 

  48. L. Yang, X.Y. Hou, Z.B. Zeng, Compete discrimation system for polynomial. Sci. China Ser E. 26, 628–646 (1996)

    Google Scholar 

  49. Y.Y. **e, Z.Y. Yang, L.F. Li, New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A 382, 2506–2514 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  50. L. Tang, Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys. 18, 103289 (2020)

    Google Scholar 

  51. C. Chen, Y.L. Jiang, Z.L. Wang et al., Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)

    ADS  Google Scholar 

  52. L.F. Li, Y.Y. **e, S.H. Zhu, New exact solutions for a generalized Kdv equation. Nonlinear Dyn. 92, 215–219 (2018)

    MATH  Google Scholar 

  53. J.R. Zhou, R. Zhou, S.H. Zhu, Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations. Chaos. Solitons Fract. 141, 110419 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Tang.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper. The author declares that this paper is original.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L. Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J Opt 52, 1388–1398 (2023). https://doi.org/10.1007/s12596-022-00963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00963-4

Keywords

Navigation