Log in

Microstructural characterization of laser surface-melted Inconel 718

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present study, a detailed study of the effect of laser parameters on microstructure and phases of the laser surface-melted (using 2 kW continuous wave Yb-fibre laser) Inconel 718 has been carried out. Surface melting has been conducted with a power of 400 watts, scan speed of 500, 750, and 1000 mm/min and with a spot diameter of 3 mm. After laser surface melting, the microstructures, phase, surface roughness and crystallographic orientation (texture) of the melt zone has been carried out. There is refinement of microstructure and change in crystallographic texture which varied with process parameters. The effect of process parameters on the microhardness of the melt zone has been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.J. Donachie, S.J. Donachie, Superalloys: a technical guide metals handbook, vol. 2 (The materials Information Society, ASM International, Cleveland, 2002), pp. 11–22

    Book  Google Scholar 

  2. X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, Improved plasticity of inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process. Mater. Des. 180, 107915 (2019)

    Article  Google Scholar 

  3. R. Vincent, Precipitation around welds in the nickel-base superalloy Inconel 718. Acta Metall. Pergamon 33(7), 1205–1216 (1985)

    Article  Google Scholar 

  4. J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim, C.Y. Kang, Microstructures and mechanical properties of inconel 718 welds by CO2 laser welding. J. Mater. Process. Technol. 201(1–3), 515–520 (2008)

    Article  Google Scholar 

  5. A. Ostendorf, S. Claußen, M.G. Jones, Laser material processing. Intell. Energy F. Manuf. Interdiscip. Process. Innov. 6608, 259–298 (2010)

    Google Scholar 

  6. T. Trosch, J. Strößner, R. Völkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted inconel 718 compared to forging and casting. Mater. Lett. 164, 428–431 (2016)

    Article  Google Scholar 

  7. J. Dutta Majumdar, I. Manna, Mechanical properties of a laser-surface-alloyed magnesium-based alloy (AZ91) with nickel. Scr. Mater. 62(8), 579–581 (2010)

    Article  Google Scholar 

  8. S. Raghavan, B. Zhang, P. Wang, C.N. Sun, M.L.S. Nai, T. Li, J. Wei, Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 Alloy. Mater Manuf Process 0(0), 1–8 (2016)

    Google Scholar 

  9. Q. Jia, D. Gu, Selective laser melting additive manufactured inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms. Opt. Laser Technol. 62, 161–171 (2014)

    Article  ADS  Google Scholar 

  10. P.M. Mignanelli, N.G. Jones, E.J. Pickering, O.M.D.M. Messé, C.M.F. Rae, M.C. Hardy, H.J. Stone, Gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scr. Mater. 136, 136–140 (2017)

    Article  Google Scholar 

  11. B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser surface treatment of inconel 718 alloy: thermal stress analysis. Opt. Lasers Eng. 48(7–8), 740–749 (2010)

    Article  Google Scholar 

  12. Y. Tian, D. Tomus, P. Rometsch, X. Wu, Influences of processing parameters on surface roughness of hastelloy X produced by selective laser melting. Addit. Manuf. 13, 103–112 (2017)

    Google Scholar 

  13. K. Mumtaz, N. Hopkinson, Top surface and side roughness of inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 15(2), 96–103 (2009)

    Article  Google Scholar 

  14. D.B. Snow, Laser surface melting of metals and alloys. In Emergent process methods for high-technology ceramics, ed. by R.F. Davis, H. Palmour, R.L. Porter. Materials science research, vol 17 (Springer, Boston, MA, 1984). https://doi.org/10.1007/978-1-4684-8205-8_34

    Chapter  Google Scholar 

  15. S. Basak, S.K. Sharma, K.K. Sahu, S. Gollapudi, J. Dutta Majumdar, Surface modification of structural material for nuclear applications by electron beam melting: enhancement of microstructural and corrosion properties of Inconel 617. SN Appl Sci 1, 708 (2019)

    Article  Google Scholar 

  16. D. Zhang, W. Niu, X. Cao, Z. Liu, Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured inconel. Mater. Sci. Eng. A 644, 32–40 (2015)

    Article  Google Scholar 

  17. X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, A. Birur, Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of inconel 718 alloy butt joints welded using 4 KW Nd:YAG laser. J. Mater. Sci. 44(17), 4557–4571 (2009)

    Article  ADS  Google Scholar 

  18. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang, Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy inconel 718. Rare Met. 30, 433–438 (2011)

    Article  Google Scholar 

  19. H. **ao, S. Li, X. Han, J. Mazumder, L. Song, Laves phase control of inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater. Des. 122, 330–339 (2017)

    Article  Google Scholar 

  20. B.D. Cullity, S.R. Stock, Elements of X ray diffraction, vol. 3 (Addison-Wesley Publishing Company Inc, Reading, Massachusetts, 1956), pp. 152–161

    Google Scholar 

  21. M. Ahmad, J.I. Akhter, M.A. Shaikh, Microstructure Evolution in the Electron Beam Treated Surface of a Ni-Base Single Crystal. J. Alloys Compd. 422, 97–101 (2006)

    Article  Google Scholar 

  22. P.J.J. Withers, H.K.D.H. Bhadeshia, Residual stress part 1—measurement technique. Mater. Sci. Technol. 17(4), 355–365 (2001)

    Article  Google Scholar 

  23. M.M. Kirka, F. Medina, R. Dehoff, A. Okello, Mechanical behavior of post-processed inconel 718 manufactured through the electron beam melting process. Mater. Sci. Eng. A 680, 338–346 (2017)

    Article  Google Scholar 

  24. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, X. Zeng, The microstructure and mechanical properties of deposited-in718 by selective laser melting. J. Alloys Compd. 513, 518–523 (2012)

    Article  Google Scholar 

  25. C. Slama, M. Abdellaoui, Structural characterization of the aged inconel 718. J. Alloys Compd. 306(1–2), 277–284 (2000)

    Article  Google Scholar 

  26. X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 631, 153–164 (2015)

    Article  Google Scholar 

  27. M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, K. Zhou, Anisotropic tensile behavior of in situ precipitation strengthened inconel 718 fabricated by additive manufacturing. Mater. Sci. Eng. A 701, 344–351 (2017)

    Article  Google Scholar 

  28. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, Y. Shi, Differences in Microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review. Front. Mech. Eng. 10(2), 111–125 (2015)

    Article  Google Scholar 

  29. H. Li, E. Hsu, J. Szpunar, Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets. J. Mater. Sci. 43(22), 7148–7156 (2008)

    Article  ADS  Google Scholar 

  30. S. Sahu, N.K. Sharma, S.K. Patel, K. Mondal, S. Shekhar, The effect of grain boundary structure on sensitization behavior in a nickel-based superalloy. J. Mater. Sci. 54(2), 1797–1818 (2019)

    Article  ADS  Google Scholar 

  31. X. Wang, K. Chou, Effects of thermal cycles on the microstructure evolution of inconel 718 during selective laser melting process. Addit. Manuf. 18, 1–14 (2017)

    Google Scholar 

  32. P. Sharma, J.D. Majumdar, Nano-borides and silicide dispersed composite coating on AISI 304 stainless steel by laser-assisted HVOF spray deposition. J. Therm. Spray Technol. 23(7), 1105–1115 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The financial support from the Department of Science and Technology, Ministry of Science and Technology, Government of India, under the FIST Program-2007 (SR/FIST/ETII-031/2007) for the 2 kW fibre laser is gratefully acknowledged. We are also grateful to Muvvala Gopinath, research scholar of Department of Mechanical Engineering, I.I.T. Kharagpur, for extending their support in carrying out the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dutta Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Biswas, K., Nath, A.K. et al. Microstructural characterization of laser surface-melted Inconel 718. J Opt 49, 494–509 (2020). https://doi.org/10.1007/s12596-020-00649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00649-9

Keywords

Navigation