Log in

Generation of second harmonics of self-focused quadruple-Gaussian laser beams in collisional plasmas with density ramp

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents a scheme for generation of second harmonics of intense laser beams propagating through collisional plasmas. In order to see the effect of uniformity as well as nonuniformity of the irradiance over the cross section of the laser beam on yield of generated harmonics, the field distribution in the medium has been expressed in terms of quadruple Gaussian (Q.G) profile instead of Gaussian profile. Moment theory has been adopted to find semi-analytical solution of the wave equation for the slowly varying envelope of the laser beam. When laser beam with frequency \( \omega _0 \) propagates through plasma it makes the plasma electrons to oscillate at pump frequency \( \omega _0 \). These oscillations of the plasma electrons in the presence of thermal velocity generate an electron plasma wave (EPW) at frequency \( \omega _0 \). The generated EPW beats with the pump beam to produce its second harmonics. By using hydrodynamic fluid model of plasma, nonlinear current density for the SHG has been obtained. Emphasis are put on investigation of the effect of various laser and plasma parameters on propagation dynamics of pump beam and conversion efficiency of second harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.M. Antonov, R.M. Mamilayev, I.P. Nalimov, A.H. Shakirov, 3-D holographic pictures of human lungs. Opt. Commun. 38, 81 (1981)

    Article  ADS  Google Scholar 

  2. Q. Song, Y. Zhao, A.R. Sanchez, C. Zhang, X. Liu, Fast continuous terahertz wave imaging system for security. Opt. Commun. 282, 2019 (2009)

    Article  ADS  Google Scholar 

  3. A.W. DeSilva, The evolution of light scattering as a plasma diagnostic. Cont. Plasma Phys. 40, 23 (2000)

    Article  ADS  Google Scholar 

  4. W.J. McNeil, N.R. Thompson, X-ray free-electron lasers. Nat. Photonics 4, 814 (2010)

    Article  ADS  Google Scholar 

  5. J. Bohon, R. D’MelloR, C. Ralston, S. Gupta, M.R. Chance, Synchrotron X-ray footprinting on tour. J. Synchrotron Radiat. 21, 24 (2013)

    Article  Google Scholar 

  6. G. Vampa, T. Brabec, Merge of high harmonic generation from gases and solids and its implications for attosecond science. J. Phys. B Atom. Mol. Opt. Phys. 50, 083001 (2017)

    Article  ADS  Google Scholar 

  7. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  8. G. Orlando, C. Wang, T. Hot, S. Chu, High-order harmonic generation in disordered semiconductors. J. Opt. Soc. Am. B 35, 680 (2018)

    Article  ADS  Google Scholar 

  9. C.S. Liu, V.K. Tripathi, Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15, 023106 (2008)

    Article  ADS  Google Scholar 

  10. A. Singh, N. Gupta, Higher harmonic generation by self-focused \( q \)-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621 (2014)

    Article  ADS  Google Scholar 

  11. R.P. Singh, S.L. Gupta, R.K. Thareja, Third harmonic generation in air ambient and laser ablated carbon plasma. Phys. Plasmas 22, 123302 (2015)

    Article  ADS  Google Scholar 

  12. Y. Tyagi, D. Tripathiand, A. Kumar, Bernstein wave aided laser third harmonic generation in a plasma. Phys. Plasmas 23, 093115 (2016)

    Article  ADS  Google Scholar 

  13. J.L. Bobin, High intensity laser plasma interaction. Phys. Rep. 122, 173 (1985)

    Article  ADS  Google Scholar 

  14. N. Erokhin, V.E. Zakharov, S.S. Moiseev, Second harmonic generation by an electromagnetic wave incident on inhomogeneous plasma. Sov. Phys. JETP 29, 101 (1969)

    ADS  Google Scholar 

  15. F. Brunel, Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit. J. Opt. Soc. Am. B 7, 521 (1990)

    Article  ADS  Google Scholar 

  16. S.C. Wilks, J.M. Dawson, W.B. Mori, T. Katsouleas, M.E. Jones, Photon accelerator. Phys. Rev. Lett. 62, 2600 (1989)

    Article  ADS  Google Scholar 

  17. J.A. Stamper, R.H. Lehmberg, A. Schmitt, M.J. Herbst, F.C. Young, J.H. Gardnerand, S.P. Obenshain, Evidence in the second-harmonic emission for self-focusing of a laser pulse in a plasma. Phys. Fluids 28, 2563 (1985)

    Article  ADS  Google Scholar 

  18. M.S. Sodha, J.K. Sharma, D.P. Tewari, R.P. Sharma, S.C. Kaushik, Plasma wave and second harmonic generation. Plasma Phys. 20, 825 (1978)

    Article  ADS  Google Scholar 

  19. J. Parashar, H.D. Pandey, Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci. 20, 996 (1992)

    Article  ADS  Google Scholar 

  20. T.H. Maiman, Stimulated optical radiation in Ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  21. A. Singh, N. Gupta, Second-harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma. Laser Part. Beams 34, 1 (2016)

    Article  ADS  Google Scholar 

  22. A. Singh, N. Gupta, Second harmonic generation of self-focused cosh-Gaussian laser beam in collisional plasma. Optik 127, 5452 (2016)

    Article  ADS  Google Scholar 

  23. N. Gupta, Second harmonic generation of \(q\)-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184 (2019)

    Article  ADS  Google Scholar 

  24. H.A. Salih, R.P. Sharma, Plasma wave and second-harmonic generation of intense laser beams due to relativistic effects. Phys. Plasmas 11, 3186 (2004)

    Article  ADS  Google Scholar 

  25. P. Jha, R.K. Mishra, G. Raj, A.K. Upadhyay, Second harmonic generation in laser magnetized-plasma interaction. Phys. Plasmas 14, 053107 (2007)

    Article  ADS  Google Scholar 

  26. N. Kant, D.N. Gupta, H. Suk, Generation of second-harmonic radiations of a self focusing laser from a plasma with density-transition. Phys. Lett. A 375, 3134 (2011)

    Article  ADS  Google Scholar 

  27. D.N. Gupta, H. Suk, Efficient high harmonic radiation generation during laser electron acceleration in vacuum. J. Appl. Phys. 108, 083308 (2009)

    Article  ADS  Google Scholar 

  28. P. Sati, A. Sharma, V.K. Tripathi, Self focusing of a quadruple Gaussian laser beam in a plasma. Phys. Plasmas 19, 092117 (2012)

    Article  ADS  Google Scholar 

  29. M. Moshkelgosha, Controlling the self-focusing of quadruple Gaussian beam in plasma. IEEE Trans. Plasma Sci. 44, 894 (2016)

    Article  ADS  Google Scholar 

  30. Y. Wang, C. Yuan, Z. Zhou, L. Li, Y. Du, Propagation of Gaussian laser beam in cold plasma of Drude model. Phys. Plasmas 18, 113105 (2011)

    Article  ADS  Google Scholar 

  31. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self focusing of laser beams in plasmas and semiconductors, in Progress in Optics, vol. XIII, ed. by E. Wolf (North Holland, Amsterdam, 1976), p. 169

    Google Scholar 

  32. D.N. Gupta, M.S. Hur, I. Hwang, H. Suk, A.K. Sharma, Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155 (2007)

    Article  ADS  Google Scholar 

  33. T. Taniuti, H. Washimi, Self-trap** and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21, 209 (1968)

    Article  ADS  Google Scholar 

  34. M.J. Ablowitz, H.J. Segur, On the evolution of packets of water waves. Fluid Mech. 92, 691 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S. Generation of second harmonics of self-focused quadruple-Gaussian laser beams in collisional plasmas with density ramp. J Opt 49, 455–468 (2020). https://doi.org/10.1007/s12596-020-00639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00639-x

Keywords

Navigation