Log in

Theory of Nonlinear Implicit Fractional Differential Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the basic theory of nonlinear implicit fractional differential equations involving Caputo fractional derivative. In particular, we investigate the existence and interval of existence of solutions, uniqueness, continuous dependence of solutions on initial conditions, estimates on solutions and continuous dependence on parameters and functions involved in the equations. Further, we study \(\varepsilon \)-approximate solution of the implicit fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An introduction to the fractional calculus and differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  5. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  Google Scholar 

  6. Agarwal, R. P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative, advances in difference equations 47, (2009) Article ID 981728

  7. Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of caputo type. Springer-Verlag, New York (2010)

    Book  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  9. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear. Anal. 69, 2677–2682 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lakshmikantham, V., Vatsala, A.S.: General uniqueness and mono- tone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828–834 (2008)

    Article  MathSciNet  Google Scholar 

  11. Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293, 511–522 (2004)

    Article  MathSciNet  Google Scholar 

  12. Daftardar-Gejji, V., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)

    Article  MathSciNet  Google Scholar 

  13. Zhou, Y.: Existence and uniqueness of solutions for a system of fractional, differential equations. Fract. Calc. Appl. Anal. 12(2), 195–204 (2003)

    MathSciNet  Google Scholar 

  14. Wang, J., Zhou, Y.: Existence of mild solutions for fractional delay evolution systems. Appl. Math. Comput. 218, 357–367 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242, 649–657 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Nieto, J.J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville Caputo derivative. Mathematics 3, 398–411 (2015)

    Article  Google Scholar 

  17. Benchohra, M., Souid, M.: Integrable solutions for implicit fractional order differential equations. TJMM 6(2), 101–107 (2014)

    MathSciNet  Google Scholar 

  18. Benchohraa, M., Bouriaha, S.: Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order. Moroccan. J. Pure. Appl. Anal. 1(1), 22–37 (2015)

    Google Scholar 

  19. Tidke, H.L.: Some theorems on fractional semilinear evolution equations. J. Appl. Anal. 18, 209–224 (2012)

    Article  MathSciNet  Google Scholar 

  20. Tidke, H.L., Dhakne, M.B.: Approximate solutions to nonlinear mixed type integrodifferential equation with nonlocal condition. Commun. Appl. Nonlinear. Anal. 17(2), 35–44 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta. Math. Vietnamica. 24(2), 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Henry, D.: Geometric theory of semilinear parabolic partial differential equations. Springer, Berlin, Germany (1989)

    Google Scholar 

Download references

Acknowledgments

We thank anonymous referees for their valuable comments to improve our paper. The first author was supported by UGC, New Delhi, through the Minor Research Project F. No. 42-997/2013(SR). The work of Juan J. Nieto has been partially supported by the Ministerio de Economia y Competitividad of Spain under Grant MTM2013–43014–P, Xunta de Galicia under grants R2014/002 and GRC 2015/004, and co-financed by the European Community fund FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor D. Kucche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucche, K.D., Nieto, J.J. & Venktesh, V. Theory of Nonlinear Implicit Fractional Differential Equations. Differ Equ Dyn Syst 28, 1–17 (2020). https://doi.org/10.1007/s12591-016-0297-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0297-7

Keywords

Mathematics Subject Classification

Navigation