Log in

Ore-Forming Fluids Characteristics and Metallogenesis of the An**g Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The An**g Hitam Pb-Zn deposit in northern Sumatra (Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous-Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization: (I) sedimentary and (II) hydrothermal mineralization. Ore-related calcite from both stages I and II contains mainly liquid- and gas-liquid two-phase-type fluid inclusions (FI). For stage I ore-forming fluids, FI homogenization temperatures (Th) are 105 to 199 °C, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage II, the Th (206 to 267 °C) and salinity (19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids (probably from deep-lying plutons), whereas the stage II ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the An**g Hitam deposit was a Carboniferous exhalative sedimentary (SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Badham, J. P. N., Williams, P. J., 1981. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Economic Geology, 76(8): 2118–2127. https://doi.org/10.2113/gsecongeo.76.8.2118

    Article  Google Scholar 

  • Barber, A. J., Crow, M. J., 2003. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 6(1): 1–28. https://doi.org/10.1016/s1342-937x(05)70642-0

    Article  Google Scholar 

  • Basuki, N. I., 2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 11(1/2/3/4): 1–17. https://doi.org/10.2113/11.1-4.1

    Google Scholar 

  • Betts, P. G., Giles, D., Lister, G. S., 2003. Tectonic Environment of Shale-Hosted Massive Sulfide Pb-Zn-Ag Deposits of Proterozoic Northeastern Australia. Economic Geology, 98(3): 557–576. https://doi.org/10.2113/gsecongeo.98.3.557

    Article  Google Scholar 

  • Betts, P. G., Lister, G. S., 2002. Geodynamically Indicated Targeting Strategy for Shale-Hosted Massive Sulfide Pb-Zn-Ag Mineralisation in the Western Fold Belt, Mt Isa Terrane. Australian Journal of Earth Sciences, 49(6): 985–1010. https://doi.org/10.1046/j.1440-0952.2002.00965.x

    Article  Google Scholar 

  • Brown, P. E., Lamb, W. M., 1989. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 53(6): 1209–1221. https://doi.org/10.1016/0016-7037(89)90057-4

    Article  Google Scholar 

  • Burrett, C., Zaw, K., Meffre, S., et al., 2014. The Configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31–51. https://doi.org/10.1016/j.gr.2013.05.020

    Article  Google Scholar 

  • Cameron, N. R., Bennett, J. D., Bridge, D. M., et al., 1982. The Geology of the Tapaktuan Quadrangle (0519), Sumatra. Scale 1: 250 000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. 19

    Google Scholar 

  • Cameron, N. R., Clarke, M. C. G., Aldiss, D. T., et al., 1980. The Geological Evolution of Northern Sumatra. Indonesian Petroleum Association, 1: 149–187

    Google Scholar 

  • Cao, D. T., Tuyen, N. H., Le, V. D., et al., 2005. Evolution of Faulting Tectonics in Southeast Asia. Crustal Deformation & Earthquake, 25(1): 51–60. https://doi.org/10.14075/j.jgg.2005.01.010

    Google Scholar 

  • Chen, Y. J., Ni, P., Fan, H. R., et al., 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085–2108 (in Chinese with English Abstract)

    Google Scholar 

  • Cooke, D. R., Bull, S. W., Large, R. R., et al., 2000. The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits. Economic Geology, 95(1): 1–18. https://doi.org/10.2113/gsecongeo.95.1.1

    Article  Google Scholar 

  • Crow, M. J., Barber, A. J., 2005. Map: Simplified Geological Map of Sumatra. Geological Society, London, Memoirs, 31(1): NP.2-NP.19. https://doi.org/10.1144/gsl.mem.2005.031.01.17

    Google Scholar 

  • Crow, M. J., van Leeuwen, T. M., 2005. Metallic Mineral Deposits. In: Barber, A. J., Crow, M. J., Milsom, J. S., eds., Sumatra: Geology, Resources and Tectonic Evolution. Geological Society of London, London. 147–174

    Google Scholar 

  • Deng, J., Wang, C. M., Bagas, L., et al., 2015. Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 50(8): 987–1006. https://doi.org/10.1007/s00126-015-0584-1

    Article  Google Scholar 

  • Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216–266. https://doi.org/10.1016/j.gr.2017.02.005

    Article  Google Scholar 

  • Gao, X. W., Yang, Z. Q., Wu, X. R., 2013. A Discussion on Mineralization within Magmatic Cycles, Sumatra (Indonesia). Geology and Mineral Resources of South China, 29(4): 299–307 (in Chinese with English Abstract)

    Google Scholar 

  • Genrich, J. F., Bock, Y., McCaffrey, R., et al., 2000. Distribution of Slip at the Northern Sumatran Fault System. Journal of Geophysical Research: Solid Earth, 105(B12): 28327–28341. https://doi.org/10.1029/2000jb900158

    Google Scholar 

  • Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada Short Course Series, Vancouver. 9–53

    Google Scholar 

  • Goodfellow, W. D., Lydon, J. W., 2007. Sedimentary Exhalative (SEDEX) Deposits. In: Goodfellow, W. D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, Toronto. 163–183

    Google Scholar 

  • Han, F., Sun, H. T., 1999. Metallogenic System of SEDEX Type Deposits: A Review. Earth Science Frontiers (China University of Geosciences, Bei**g), 1: 139–142 (in Chinese with English Abstract)

    Google Scholar 

  • Hoefs, J., 1973. Stable Isotope Geochemistry. Springer-Verlag, Berlin-Heidelberg-New York. 140

    Book  Google Scholar 

  • Hou, Z. Q., Mo, X. X., Yang, Z. M., et al., 2006a. Metallogenesis in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2): 340–351 (in Chinese with English Abstract)

    Google Scholar 

  • Hou, Z. Q., Yang, Z. S., Xu, W. Y., et al., 2006b. Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337–358 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2017. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1): 130–143. https://doi.org/10.1007/s12583-017-0747-3

    Article  Google Scholar 

  • Hutchison, C. S., Taylor, D., 1978. Metallogenesis in SE Asia. Journal of the Geological Society, 135(4): 407–428. https://doi.org/10.1144/gsjgs.135.4.0407

    Article  Google Scholar 

  • Jamaludin, S. N. F., Pubellier, M., Menier, D., 2017. Structural Restoration of Carbonate Platform in the Southern Part of Central Luconia, Malaysia. Journal of Earth Science, 29(1): 1–14. https://doi.org/10.1007/s12583-017-0812-y

    Google Scholar 

  • Janković, S., 2001. Tectonic Setting and Metallogenesis of the Principal Sectors of the Tethyan Eurasian Metallogenic Belt. Geotectonica et Metallogenia, 25(1/2): 14–36

    Google Scholar 

  • Kroopnick, P., Weiss, R. F., Craig, H., 1972. Total CO2, 13C, and Dissolved Oxygen-18O at Geosecs II in the North Atlantic. Earth and Planetary Science Letters, 16(1): 103–110. https://doi.org/10.1016/0012-821x(72)90242-7

    Article  Google Scholar 

  • Laznicka, P., 2006. Giant Metallic Deposits: Future Sources of Industrial Metals. Economic Geology, 101(7): 1445–1446. https://doi.org/10.1007/3-540-33092-5

    Article  Google Scholar 

  • Leach, D. L., Bradley, D. C., Huston, D., et al., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 105(3): 593–625. https://doi.org/10.2113/gsecongeo.105.3.593

    Article  Google Scholar 

  • Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100: 561–607

    Google Scholar 

  • Li, H., Sun, H. S., Wu, J. H., et al., 2017. Re-Os and U-Pb Geochronology of the Shazigou Mo Polymetallic Ore Field, Inner Mongolia: Implications for Permian-Triassic Mineralization at the Northern Margin of the North China Craton. Ore Geology Reviews, 83: 287–299. https://doi.org/10.1016/j.oregeorev.2016.12.010

    Article  Google Scholar 

  • Li, H., **, X. S., 2015. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, 65: 375–389. https://doi.org/10.1016/j.oregeorev.2014.10.001

    Article  Google Scholar 

  • Li, H., **, X. S., Wu, C. M., et al., 2013. Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica: English Edition, 87(2): 486–500. https://doi.org/10.1111/1755-6724.12063

    Article  Google Scholar 

  • Li, K., Zhao, S., Tang, Z., et al., 2018. Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science—Journal of China University of Geosciences, 43(7): 2449–2464. https://doi.org/10.3799/dqkx.2018.554 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Liu, J. L., Wang, A. J., **a, H. R., et al., 2010. Cracking Mechanisms during Galena Mineralization in a Sandstone-Hosted Lead-Zinc Ore Deposit: Case Study of the **ding Giant Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 45(6): 567–582. https://doi.org/10.1007/s00126-010-0294-7

    Article  Google Scholar 

  • Liu, Y. C., Hou, Z. Q., Yang, Z. S., et al., 2008. Some Insights and Advances in Study of Mississippi Valley-Type (MVT) Lead-Zinc Deposits. Mineral Deposits, 27(2): 253–264 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y., Zhu, Z. M., Chen, C., et al., 2015. Geochemical and Mineralogical Characteristics of Weathered Ore in the Dalucao REE Deposit, Mianning-Dechang REE Belt, Western Sichuan Province, Southwestern China. Ore Geology Reviews, 71: 437–456. https://doi.org/10.1016/j.oregeorev.2015.06.009

    Article  Google Scholar 

  • Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Bei**g. 488 (in Chinese)

    Google Scholar 

  • Lu, H. Z., Shan, Q., 2015. Composition of Ore Forming Fluids in Metal Deposits and Fluid Inclusion. Acta Petrologica Sinica, 31(4): 1108–1116 (in Chinese with English Abstract)

    Google Scholar 

  • Lydon, J. W., 1983. Applications of Computer Modeling to the Study of the Genesis of Stratiform Sulfide Deposits. Journal of the International Association for Mathematical Geology, 15(1): 231–232

    Article  Google Scholar 

  • Lydon, J. W., 1996. Sedimentary Exhalative Sulphides (SEDEX). In: Eckstrand, O. R., Sinclair, W. D., Thorpe, R. I., eds., Geology of Canadian Mineral Deposit Types. Geological Survey of Canada, Ottawa. 130–152

    Google Scholar 

  • Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605–623. https://doi.org/10.1080/08120099608728282

    Article  Google Scholar 

  • Metcalfe, I., 1997. The Palaeo-Tethys and Palaeozoic-Mesozoic Tectonic Evolution of Southeast Asia. In: Dheeradilok, P., Hinthong, C., Chaodumrong, P., et al., eds., Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Department of Mineral Resources, Bangkok, Thailand. 19–24

    Google Scholar 

  • Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566. https://doi.org/10.1016/s1367-9120(02)00022-6

    Article  Google Scholar 

  • Miall, A. D., 1984. Principles of Sedimentary Basin Analysis. Springer-Verlag, New York. 490

    Book  Google Scholar 

  • Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York. 517–611

    Google Scholar 

  • Pei, R. F., Mei, Y. X., Qu, H. Y., et al., 2013. New Recognized Intellect for Prospecting Large-Superlarge Mineral Deposits. Mineral Deposits, 34(4): 661–672 (in Chinese with English Abstract)

    Google Scholar 

  • Reynolds, N. A., 2004. Geology of the An**g Hitam Resource, Dairi Project, North Sumatra, Indonesia. Herald Resources Ltd., Sumatra. 95

    Google Scholar 

  • Roedder, E., 1984. Fluid Inclusions. In: Ribbe, P. H., ed., Reviews in Mineralogy, Vol. 12. Mineralogical Society of America, Washington. 644

    Book  Google Scholar 

  • Russell, M. J., 1983. Major Sediment-Hosted Zinc+Lead Deposits: Formation from Hydrothermal Convection Cells that Deepen during Crustal Extension. In: Sangster, D. F., ed., Short Course in Sediment-Hosted Stratiform Lead-Zinc Deposits. Mineralogical Association of Canada, Victoria, Canada. 251–282

    Google Scholar 

  • Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826–842. https://doi.org/10.2113/gsecongeo.69.6.826

    Article  Google Scholar 

  • Şengör, A. M. C., 1979. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 279(5714): 590–593. https://doi.org/10.1038/279590a0

    Article  Google Scholar 

  • Şengör, A. M. C., 1987. Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 15(1): 213–244. https://doi.org/10.1146/annurev.ea.15.050187.001241

    Article  Google Scholar 

  • Sheppard, S. M. F., Nielsen, R. L., Taylor, H. P., 1971. Hydrogen and Oxygen Isotope Ratios in Minerals from Porphyry Copper Deposits. Economic Geology, 66(4): 515–542. https://doi.org/10.2113/gsecongeo.66.4.515

    Article  Google Scholar 

  • Silic, J., Seed, R., 2001. The Geophysics of the An**g Hitam Deposit: From Map** Shales to a Major Discovery. ASEG Extended Abstracts, 2001(1): 1–4. https://doi.org/10.1071/aseg2001ab132

    Article  Google Scholar 

  • Sillitoe, R. H., 1978. Metallogenic Evolution of a Collisional Mountain Belt in Pakistan: A Preliminary Analysis. Journal of the Geological Society, 135(4): 377–387. https://doi.org/10.1144/gsjgs.135.4.0377

    Article  Google Scholar 

  • Stöcklin, J., 1974. Possible Ancient Continental Margins in Iran. In: Burk, C. A., Drake, C. L., eds., The Geology of Continental Margins. Springer-Verlag, Berlin. 873–887

    Google Scholar 

  • Sun, H. S., Wu, G. B., Liu, L., et al., 2011. Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits. Earth Science—Journal of China University of Geosciences, 36(2): 299–306 (in Chinese with English Abstract)

    Google Scholar 

  • Taylor, H. P. J., 1997. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. Geochemistry of Hydrothermal Ore Deposits, 2: 229–302

    Google Scholar 

  • Turner, R. J. W., 1992. Formation of Phanerozoic Stratiform Sediment-Hosted Zinc-Lead Deposits: Evidence for the Critical Role of Ocean Anoxia. Chemical Geology, 99(1/2/3): 165–188. https://doi.org/10.1016/0009-2541(92)90037-6

    Article  Google Scholar 

  • Ueno, K., 2003. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1): 1–24. https://doi.org/10.1016/s0031-0182(02)00708-3

    Article  Google Scholar 

  • Ulmer, P., Trommsdorff, V., 1995. Serpentine Stability to Mantle Depths and Subduction-Related Magmatism. Science, 268(5212): 858–861. https://doi.org/10.1126/science.268.5212.858

    Article  Google Scholar 

  • Wang, C. M., Bagas, L., Lu, Y. J., et al., 2016. Terrane Boundary and Spatio-Temporal Distribution of Ore Deposits in the Sanjiang Tethyan Orogen: Insights from Zircon Hf-Isotopic Map**. Earth-Science Reviews, 156: 39–65. https://doi.org/10.1016/j.earscirev.2016.02.008

    Article  Google Scholar 

  • Wang, C. M., Deng, J., Bagas, L., et al., 2017. Zircon Hf-Isotopic Map** for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293–310. https://doi.org/10.1016/j.gr.2017.04.008

    Article  Google Scholar 

  • Wang, C. M., Deng, J., Carranza, E. J. M., et al., 2014. Nature, Diversity and Temporal-Spatial Distributions of Sediment-Hosted Pb-Zn Deposits in China. Ore Geology Reviews, 56: 327–351. https://doi.org/10.1016/j.oregeorev.2013.06.004

    Article  Google Scholar 

  • Wang, L. J., 1998. Analysis and Study of the Composition of Fluid Inclusions. Geological Review, 44(5): 496–501 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2): 315–332. https://doi.org/10.1007/s12583-016-0921-7

    Article  Google Scholar 

  • Wilkinson, J. J., 2014. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives. Treatise on Geochemistry, 219–249. https://doi.org/10.1016/B978-0-08-095975-7.01109-8

    Google Scholar 

  • Wu, J., Suppe, J., 2018. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6): 1304–1318. https://doi.org/10.1007/s12583-017-0813-x

    Article  Google Scholar 

  • Zhang, D. H., 1992. Aqueous Phase Composition Characteristics of Mineral Fluid Inclusions and Its Significance in Ore Genesis. Earth Science—Journal of China University of Geosciences, 17(6): 59–70 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, H. R., Hou, Z. Q., Yang, Z. M., 2010. Metallogenesis and Geodynamics of Tethyan Metallogenic Domain: A Review. Mineral Deposits, 29(1): 113–133 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, Y. F., 2001. Theoretical Modeling of Stable Isotope Systems and Its Application to the Geochemistry of Hydrothermal Ore Deposits. Mineral Deposits, 20(1): 57–70 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, Y., Duan, Q. F., Cao, L., et al., 2018. Microthermonmetry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science—Journal of China University of Geosciences, 43(7): 2465–2483. https://doi.org/10.3799/dqkx.2018.520 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhu, H. P., Wang, L. J., Liu, J. M., 2003. Determination of Quadruple Mass Spectrometer for Gaseous Composition of Fluid Inclusion from Different Mineralization Stages. Acta Petrologica Sinica, 19(2): 314–318 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the anonymous reviewers for their critical comments and constructive suggestions, which have improved the quality of the paper greatly. This study was financially supported by the National Basic Research Program of China (No. 2014CB440901). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0859-z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Du, G., Jiang, H. et al. Ore-Forming Fluids Characteristics and Metallogenesis of the An**g Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia. J. Earth Sci. 30, 131–141 (2019). https://doi.org/10.1007/s12583-019-0859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-0859-z

Key words

Navigation