Log in

An improved modeling of TDR signal propagation for measuring complex dielectric permittivity

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Time domain reflectometry (TDR) is a measurement technique based upon transmission line theory. The solutions of transmission line equations are reformulated in terms of independent physical properties, instead of coupled per-unit-length circuit parameters. The complete TDR response is effectively modeled by a non-uniform transmission line using the non-recursive ABCD matrix approach. Approaches to calibrate line parameters and perform TDR measurements based upon such model are introduced with an example on dielectric spectroscopy. TDR modeling in terms of decoupled physical parameters and non-recursive algorithm allows more convenient calibration of line parameters and facilitates interpretation of TDR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bolvin H., Chambarel, A., 2007. Electromagnetic Wave Propagation in Polarizable Wet Media: Application to a TDR Probe. Measurement Science and Technology, 18: 1105–1109

    Article  Google Scholar 

  • Cataldo, A., Catarinucci, L., Tarricone, L., et al., 2009. A Combined TD-FD Method for Enhanced Reflectometry Measurements in Liquid Quality Monitoring. IEEE Transactions on Instrumentation and Measurement, 58(10): 3534–3543

    Article  Google Scholar 

  • Cataldo, A., Tarricone, L., Attivissimo, F., et al., 2007. A TDR Method for Real-time Monitoring of Liquids. IEEE Transactions on Instrumentation and Measurement, 56(6): 1616–1625

    Article  Google Scholar 

  • Cataldo, A., Tarricone, L., Attivissimo, F., et al., 2008a. Simultaneous Measurement of Dielectric Properties and Levels of Liquids Using a TDR Method. Measurement, 41(3): 307–319

    Article  Google Scholar 

  • Cataldo, A., Tarricone, L., Vallone, M., et al., 2008b. Uncertainty Estimation in Simultaneous Measurements of Levels and Permittivities of Liquids Using TDR Technique. IEEE Transactions on Instrumentation and Measurement, 57(3): 454–466

    Article  Google Scholar 

  • Claerbout, J., 1976. Fundamentals of Geophysical Data Processing. McGraw-Hill, New York

    Google Scholar 

  • Clarkson, T. S., Glasser, L., Tuxworth, R. W., et al., 1977. An Appreciation of Experimental Factors in Time-Domain Spectroscopy. Advances in Molecular Relaxation Processes, 10(3): 173–202

    Article  Google Scholar 

  • Di Sante, R., 2005. Time Domain Reflectometry-Based Liquid Level Sensor. Review of Scientific Instruments, 76(9): 095107

    Article  Google Scholar 

  • Dowding, C. H., Su, M. B., O’Connor, K. M., 1988. Principles of Time Domain Reflectometometry Applied to Measurement of Rock Mass Deformation. International Journal of Rock Mechanics & Mining Sciences, 25(5): 287–297

    Article  Google Scholar 

  • Dowding, C. H., Summers, J. A., Taflove, A., et al., 2002. Electromagnetic Wave Propagation Model for Differentiation of Geotechnical Disturbances along Buried Cables. Geotechnical Testing Journal, 25(4): 449–458

    Google Scholar 

  • Feng, W., Lin, C.-P., Deschamps, R. J., et al., 1999. Theoretical Model of a Multisection Time Domain Reflectometry Measurement System. Water Resources Research, 35(8): 2321–2331

    Article  Google Scholar 

  • Friel, R., Or, D., 1999. Frequency Analysis of Time-Domain Reflectometry (TDR) with Application to Dielectric Spectroscopy of Soil Constituents. Geophysics, 64(3): 707–718

    Article  Google Scholar 

  • Gorriti, A. G., Slob, E. C., 2005. A New Tool for Accurate S-Parameters Measurements and Permittivity Reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1727–1735

    Article  Google Scholar 

  • Heimovaara, T. J., 1994. Frequency Domain Analysis of Time Domain Reflectometry Waveforms: 1. Measurement of the Complex Dielectric Permittivity of Soils. Water Resources Research, 30(2): 189–199

    Article  Google Scholar 

  • Klein, L. A., Swift, C. T., 1977. An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies. IEEE Transactions on Antennas and Propagation, 25(1): 104–111

    Article  Google Scholar 

  • Lin, C.-P., 2003. Analysis of a Non-Uniform and Dispersive Time Domain Reflectometry Measurement Systems with Application to the Dielectric Spectroscopy of Soils. Water Resources Research, 39(1): 1012

    Google Scholar 

  • Lin, C.-P., Chung, C.-C., Tang, S. H., 2007. Accurate Time Domain Reflectometry Measurement of Electrical Conductivity Accounting for Cable Resistance and Recording Time. Soil Science Society of America Journal, 71(4): 1278–1287

    Article  Google Scholar 

  • Lin, C.-P., Tang, S.-H., 2007. Comprehensive Wave Propagation Model to Improve TDR Interpretations for Geotechnical Applications. Geotechnical Testing Journal, 30(2): 90–97

    Google Scholar 

  • Lin, C.-P., Tang, S.-H., Lin, W.-C., et al., 2009. Quantification of Cable Deformation with TDR: Implications to Localized Shear Deformation Monitoring. Journal of Geotechnical and Geoenvironmental Engineering, 135(1): 143–152

    Article  Google Scholar 

  • Lin, M. W., Thaduri, J., Abatan, A. O., 2005. Development of an Electrical Time Domain Reflectometry (ETDR) Distributed Strain Sensor. Measurement Science and Technology, 16(7): 1495–1505

    Article  Google Scholar 

  • Nemarich, C. P., 2001. Time Domain Reflectometry Liquid Level Sensors. IEEE Transactions on Instrumentation and Measurement, 4(4): 40–44

    Article  Google Scholar 

  • Paul, C. R., 1994. Analysis of Multi-Conductor Transmission Lines. John Wiley, New York

    Google Scholar 

  • Protonotarios, E. N., Wing, O., 1967. Analysis and Intrinsic Properties of the General Non-Uniform Transmission Line. IEEE Transactions on Microwave Theory and Techniques, 15: 142–150

    Article  Google Scholar 

  • Ramo, S., Whinnery, J. R., Van Duzer, T., 1994. Fields and Waves in Communication Electronics, 3rd Ed.. John Wiley, New York

    Google Scholar 

  • Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content and Electrical Conductivity Measurement Using Time Domain Reflectometry. Water Resources Research, 16(3): 574–582

    Article  Google Scholar 

  • Yanuka, M., Topp, G. C., Zegelin, S., et al., 1988. Multiple Reflection and Attenuation of Time Domain Reflectometry Pulses: Theoretical Considerations for Applications to Soil and Water. Water Resources Research, 24(7): 939–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-** Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CP., Tang, SH., Lin, CH. et al. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity. J. Earth Sci. 26, 827–834 (2015). https://doi.org/10.1007/s12583-015-0599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0599-7

Key Words

Navigation