Log in

Decreasing dietary lipids improves larval survival and growth of Japanese eel Anguilla japonica

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Shark eggs-based diet is the only diet by which eel larvae can grow to glass eels in captivity. However, the high level of lipids in the diet is suggested to negatively affect eel larvae. This paper examines the effect of defatted shark eggs (DSE) and hen egg yolk (HY) on growth and survival of larvae of Japanese eel Anguilla japonica. Lyophilized shark egg and commercial HY were defatted with n-hexane, and four experimental diets were prepared using both defatted and untreated shark eggs and HY. Larvae were reared for 3 weeks by feeding the experimental diets. The highest survival rate was observed in the larvae fed DSE, and larvae fed HY showed the lowest survival rate. The best growth was found in larvae fed DSE, followed by shark eggs and defatted HY, and the worst growth was in HY-fed larvae. These results show that decreasing dietary lipids improves the nutritional value of both shark eggs and HY for eel larvae. Regulation of the dietary lipid level may positively affect the larval performance of eels by combination of ingredients with a low lipid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yamamoto K, Yamauchi K (1974) Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature 251:220–222

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka H, Kagawa H, Ohta H, Okuzawa K, Hirose K (1995) The first report of eel larvae ingesting rotifers. Fish Sci 61:171–172

    Article  CAS  Google Scholar 

  3. Tanaka H, Kagawa H, Ohta H (2001) Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201:51–60

    Article  Google Scholar 

  4. Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y, Tsukamoto K, Ohkouchi N (2012) A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol Lett. doi:10.1098/rsbl.2012.0826

    Google Scholar 

  5. Tanaka H, Kagawa H, Ohta H, Unuma T, Nomura K (2003) The first production of glass eel in captivity: fish reproductive physiology: facilitates great progress in aquaculture. Fish Physiol Biochem 28:493–497

    Article  Google Scholar 

  6. Alber M, Valiela I (1994) Biochemical composition of organic aggregates produced from marine macrophyte-derived dissolved organic matter. Limnol Oceanogr 39:717–723

    Article  CAS  Google Scholar 

  7. Crossman DJ, Choat JH, Clements KD, Hardy T, McConchie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605

    Article  Google Scholar 

  8. Wilson S (2002) Nutritional value of detritus and algae in blenny territories on the Great Barrier Reef. J Exp Mar Biol Ecol 271:155–169

    Article  Google Scholar 

  9. Masuda Y, **bo T, Imaizumi H, Furuita H, Matsunari H, Murashita K, Fujimoto H, Nagao J, Kawakami Y (2013) A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fish Sci 79:681–688

    Article  CAS  Google Scholar 

  10. Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  11. Murashita K, Furuita H, Matsunari H, Yamamoto T, Awaji M, Nomura K, Nagao J, Tanaka H (2013) Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish Physiol Biochem 39:895–905

    Article  CAS  PubMed  Google Scholar 

  12. Okamura A, Yamada Y, Horie N, Mikawa N, Tanaka S, Kobayashi H, Tsukamoto K (2012) Hen egg yolk and skinned krill as possible foods for rearing leptocephalus larvae of Anguilla japonica Temminck & Schlegel. Aquac Res. doi:10.1111/j.1365-2109.2012.03160.x

    Google Scholar 

  13. Kagawa H, Tanaka H, Ohta H, Okuzawa K, Iinuma N (1997) Induced ovulation by injection of 17,20β-dihydroxy-4-pregnen-3-one in the artificially matured Japanese eel, with special reference to ovulation time. Fish Sci 63:365–637

    CAS  Google Scholar 

  14. Kagawa H, Sakurai Y, Horiuchi R, Kazeto Y, Gen K, Imaizumi H, Masuda Y (2013) Mechanism of oocyte maturation and ovulation and its application to seed production in the Japanese eel. Fish Physiol Biochem 39:13–17

    Article  CAS  PubMed  Google Scholar 

  15. Ohta H, Kagawa H, Tanaka H, Okuzawa K, Hirose K (1996) Changes in fertilization and hatching rates with time after ovulation induced by 17,20β-dihydroxy-4-pregnen-3-one in the Japanese eel, Anguilla japonica. Aquaculture 139:291–301

    Article  CAS  Google Scholar 

  16. Hara S, Uno N, Totani Y (2007) Novel fractionation of method for soy phospholipid classes. J Fac Sci Tech Seikei Univ 44:65–73 (in Japanese with English abstract)

    CAS  Google Scholar 

  17. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  18. Juaneda P, Rocquelin G (1985) Rapid and convenient separation of phospholipids and non phosphorous lipids from rat heart using silica cartridges. Lipid 20:40–41

    Article  CAS  Google Scholar 

  19. Miyashita K, Inukai N, Ota T, Sasaki S, Ota T (1999) Antioxidant activity of water extracts from fish eggs on PC liposomes. Nippon Suisan Gakkaishi 65:488–494 (in Japanese with English abstract)

    Article  Google Scholar 

  20. Furuita H, Yamamoto T, Shima T, Suzuki N, Takeuchi T (2003) Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus. Aquaculture 220:725–735

    Article  CAS  Google Scholar 

  21. Sargent JR, McEvoy LA, Bell JG (1997) Requirements, presentation and source of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127

    Article  CAS  Google Scholar 

  22. Takeuchi T (1997) Essential fatty acid requirement of aquatic animals with emphasis on fish larvae and fingerlings. Rev Fish Sci 5:1–25

    Article  Google Scholar 

  23. Izquierdo MS, Socorro J, Arantzamendi L, Hernández-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22:97–107

    Article  CAS  Google Scholar 

  24. Morais S, Conceição LEC, Rønnestad I, Koven W, Cahu C, Zambonino Infante JL, Dinis MT (2007) Dietary neutral lipid level and source in marine fish larvae: effects on digestive physiology and food intake. Aquaculture 268:106–122

    Article  CAS  Google Scholar 

  25. Salhi M, Hernadez-Crus CM, Bessonart M, Izquierdo MS, Fernandez-Palacios H (1999) Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut liver histological structure of gilthead seabream Sparus aurata larvae. Aquaculture 179:253–263

    Article  CAS  Google Scholar 

  26. Olsen AI, Attramadal Y, Reitan KI, Olsen Y (2000) Food selection and digestion characteristics of Atlantic halibut (Hippoglossus hippoglossus) larvae fed cultivated prey organisms. Aquaculture 181:293–310

    Article  Google Scholar 

  27. Kjørsvik E, Olsen C, Wold P-A, Hoehne-Reitan K, Cahu CL, Rainuzzo J, Olsen AI, Øie G, Olsen Y (2009) Comparison of dietary phospholipids and neutral lipids on skeletal development and fatty acid composition in Atlantic cod (Gadus morhua). Aquaculture 294:246–255

    Article  Google Scholar 

  28. Zambonino Infante JL, Cahu CL (1999) High dietary lipid levels enhance digestive tact maturation and improve Dicentrarchus labrax larval development. J Nutr 129:1195–1200

    CAS  PubMed  Google Scholar 

  29. Buchet V, Zambonino Infante JL, Cahu CL (2000) Effect of lipid level in compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347

    Article  CAS  Google Scholar 

  30. Brinkmeyer RL, Holt GJ (1995) Response of red drum larvae to graded levels of menhaden oil in semipurified microparticulate diets. Prog Fish-Cult 57:30–36

    Article  Google Scholar 

  31. Hamre K, Næss T, Espe M, Holm JC, Lie Ø (2001) A formulated diet for Atlantic halibut (Hippoglossus hippoglossus) larvae. Aquac Nutr 7:123–132

    Article  CAS  Google Scholar 

  32. Robin JH, Vincent B (2003) Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): study of fatty acid incorporation. Aquaculture 225:463–474

    Article  Google Scholar 

  33. Kvåle A, Yúfera M, Nygård E, Aursland K, Harboe T, Hamre K (2006) Leaching properties of three different mircoparticulate diets and preference of the diets in cod (Gadus morhua L.) larvae. Aquaculture 251:402–415

    Article  Google Scholar 

  34. Morais S, Caballero MJ, Conceição LEC, Izquierdo MS, Dinis MT (2006) Dietary neutral lipid level and source in Senegalese sole (Solea senegalensis) larvae: effect on growth, lipid metabolism and digestive capacity. Comp Biochem Physiol 144B:57–69

    Article  CAS  Google Scholar 

  35. Morais S, Torten M, Nixon O, Lutzky S, Conceição LEC, Dinis MT, Tandler A, Koven W (2006) Food intake and absorption are affected by dietary lipid level and lipid source in seabream (Sparus aurata L.) larvae. J Exp Mar Biol Ecol 331:51–63

    Article  CAS  Google Scholar 

  36. Gawlicka A, Herold MA, Barrows FT, de la Noüe J, Hung SO (2002) Effects of dietary lipids on growth, fatty acid composition, intestinal absorption and hepatic storage in white sturgeon (Acipenser transmontanus R.) larvae. J Appl Ichthyol 18:673–681

    Article  CAS  Google Scholar 

  37. Izquierdo MS, Tandler A, Salhi M, Kolokovski S (2001) Influence of dietary polar lipids’ quantity and quality on ingestion and assimilation of labelled fatty acids by larval gilthead seabream. Aquac Nutr 7:153–160

    Article  CAS  Google Scholar 

  38. Kjørsvik E, Olsen Y, Rosenlund G, Vadstein O (1991) Effect of various lipid enrichments in rotifers and the development of early stages in turbot. In: Lavens P, Sorgeloos P, Jaspers E, Ollevier F (eds) Proceedings of fish and crustacean larviculture symposium. Larvi’91. European Aquaculture Society, Special Publication, vol. 15. European Aquaculture SocietyGent, Belgium, pp 20–22

  39. Morais S, Koven W, Rønnestad I, Dinis MT, Conceição LEC (2005) Dietary protein/lipid ratio affects growth and amino acid and fatty acid absorption and metabolism in Senegalese sole (Solea senegalensis Kaup 1858) larvae. Aquaculture 246:347–357

    Article  CAS  Google Scholar 

  40. Wold P-A, Hoehne-Reitan K, Cahu CL, Zambonino Infante J, Rainuzzo J, Kjørsvik E (2007) Phospholipids vs. neutral lipids: effects on digestive enzymes in Atlantic cod (Gadus morhua) larvae. Aquaculture 272:502–513

    Article  CAS  Google Scholar 

  41. Gisbert E, Villeneuve L, Zambonino-Infante JL, Quazuguel P, Cahu CL (2005) Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40:609–618

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi T, Wang Q, Furuita H, Hirota T, Ishida S, Hayasawa H (2003) Development of microparticle diets for Japanese flounder Paralichthys olivaceus. Fish Sci 69:547–554

    Article  CAS  Google Scholar 

  43. Zambonino Infante JL, Cahu CL, Peres A (1997) Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. J Nutr 127:608–614

    CAS  PubMed  Google Scholar 

  44. Cavalho AP, Sá R, Oliva-Teles A, Bergot P (2004) Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages. Aquaculture 234:319–333

    Article  Google Scholar 

  45. Ketchen KS (1975) Age and growth of dogfish Squalus acanthias in British Columbia waters. J Fish Res Board Can 32:43–59

    Article  Google Scholar 

  46. Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic, San Diego, pp 181–257

    Google Scholar 

  47. Villeneuve L, Gisbert E, Zambonino Infante JL, Quazuguel P, Cahu CL (2005) Effect of nature of dietary lipids on European sea bass morphogenesis: implication of retinoid receptor. Br J Nutr 94:877–884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by funding from the Ministry of Agriculture, Forestry and Fisheries, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Furuita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuita, H., Murashita, K., Matsunari, H. et al. Decreasing dietary lipids improves larval survival and growth of Japanese eel Anguilla japonica . Fish Sci 80, 581–587 (2014). https://doi.org/10.1007/s12562-014-0713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0713-2

Keywords

Navigation