Log in

Pinning control and synchronization on complex dynamical networks

  • Regular Papers
  • Invited Paper
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

This article offers a survey of the recent research advances in pinning control and pinning synchronization on complex dynamical networks. The emphasis is on research ideas and theoretical developments. Some technical details, if deemed necessary for clarity, will be outlined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, X. F. Wang, and X. Li, Introduction to Complex Networks: Models, Structures and Dynamics, Higher Education Press, Bei**g, 2012; 2nd edition: Fundamentals of Complex Networks, Wiley, Singapore, 2014.

    Google Scholar 

  2. P. Erdös and A. Rényi, “On the evolution of random graphs,” Pub. Math. Inst. Huang. Acad. Sci., vol. 5, no. 1, pp. 17–60, 1960.

    MathSciNet  MATH  Google Scholar 

  3. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, pp. 440–442, 1998.

    Article  Google Scholar 

  4. A. -L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, pp. 509–512, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  6. X. F. Wang and G. Chen, “Pinning control of scalefree dynamical networks,” Physica A, vol. 310, pp. 521–531, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Li, X. F. Wang, and G. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Trans. Circ. Syst.-I, vol. 51, no. 10, pp. 2074–2087, 2004.

    Article  MathSciNet  Google Scholar 

  8. A. Cho, “Scientific link-up yields ‘control panel’ for networks,” Science, vol. 332, p. 777, 2011.

    Article  Google Scholar 

  9. I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision making in animal groups on the move,” Nature, vol. 433, p. 513, 2005.

    Article  Google Scholar 

  10. X. F. Wang, X. Li, and G. Chen, Network Science: An Introduction (in Chinese), Higher Education Press, Bei**g, 2012.

    Google Scholar 

  11. Q. **e and G. Chen, “Synchronization stability analysis of the chaotic Rössler system,” Int. J. Bifur. Chaos, vol. 6, no. 11, pp. 2153–2161, 1996.

    Article  MATH  Google Scholar 

  12. M. H. DeGroot, “Reaching a consensus,” J. Amer. Statist. Asso., vol. 69, no. 345, pp. 118–121, 1974.

    Article  MATH  Google Scholar 

  13. R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks of dynamic agents,” Proc. Amer. Contr. Conf., pp. 951–596, 2003.

    Google Scholar 

  14. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Auto. Contr., vol. 49, no. 9, pp. 1520–1533, 2004.

    Article  MathSciNet  Google Scholar 

  15. L. **ao and X. F. Liao, “Periodic intermittent consensus of second-order agents networks with nonlinear dynamics,” Int. J. Contr. Auto. Syst., vol. 12, no. 1, pp. 23–28, 2014.

    Article  Google Scholar 

  16. J. Chen, J.-A. Lu, and J. Zhou, “On the relationship between the synchronous state and the solution of an isolated node in a complex network,” ACTA Auto. Sinica (in Chinese), vol. 39, no. 12, pp. 2111–2120, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  17. X. F. Wang and G. Chen, “Synchronization in scale-free networks: robustness and fragility,” IEEE Trans. Circ. Syst.-I, vol. 49, no. 1, pp. 54–62, 2002.

    Article  MathSciNet  Google Scholar 

  18. X. F. Wang and G. Chen, “Synchronization in small-world dynamical networks,” Int. J. Bifur. Chaos, vol. 12, no. 1, pp. 187–192, 2002.

    Article  Google Scholar 

  19. L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, pp. 2109–2112, 1998.

    Article  Google Scholar 

  20. M. Barahona and L. M. Pecora, “Synchronization in small-world systems,” Phys. Rev. Lett., vol. 89, no. 5, ID 054101, 2002.

    Google Scholar 

  21. G. Chen and Z. S. Duan, “Network synchronizability analysis: a graph-theoretic approach,” Chaos, vol. 18, no. 3, ID 037102, 2008.

    Google Scholar 

  22. C.-T. Lin, “Structural controllability,” IEEE Trans. Auto. Contr., vol. 19, no. 3, pp. 201–208, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. L. Willems, “Structural controllability and observability,” Sys. Contr. Lett., vol. 8, no. 1, pp. 5–12, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,” Nature, vol. 473, pp. 167–173, 2011.

    Article  Google Scholar 

  25. G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, “Controlling complex networks: how much energy is needed?” Phys. Rev. Lett., vol. 108, no. 21, ID 218703, 2012.

    Google Scholar 

  26. T. Nepusz and T. Vicsek, “Controlling edge dynamics in complex networks,” Nature Physics, vol. 8, pp. 568–573, 2012.

    Article  Google Scholar 

  27. T. Jia, Y.-Y. Liu, E. Csóka, M. Pósfai, J.-J. Slotine, and A.-L. Barabási, “Emergence of bimodality in controlling complex networks,” Nature Comm., vol. 4, ID 2002, 2013.

  28. T. Jia and A.-L. Barabási, “Control capacity and a random sampling method in exploring controllability of complex networks,” Sci. Report, vol. 3, ID 2354, 2013.

  29. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizing controllability of complex networks by minimum structural perturbations,” Phys. Rev. E, vol. 85, no. 2, ID 026115, 2012.

    Google Scholar 

  30. Z. Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of complex networks,” Nature Comm., vol. 4, ID 3447, 2013.

  31. R. W. Shields and J. B. Pearson, “Structural controllability of multi-input linear systems,” IEEE Trans. Auto. Contr., vol. 21, no. 5, pp. 203–212, 1976.

    Article  MATH  Google Scholar 

  32. C.-T. Lin, “System structure and minimal structure controllability,” IEEE Trans. Auto. Contr., vol. 22, no. 11, pp. 855–862, 1977.

    MathSciNet  MATH  Google Scholar 

  33. J.-M. Dion, C. Commaulta, and J. van der Woudeb, “Generic properties and control of linear structured systems: a survey,” Automatica, vol. 39, no. 7, pp. 1125–1144, 2003.

    Article  MathSciNet  Google Scholar 

  34. A. Lombardi and M. Hörnquist, “Controllability analysis of networks,” Phys. Rev. E, vol. 75, ID 056110, 2007.

  35. B. Liu, T. Chu, L. Wang, and G. **e, “Controllability of a leader-follower dynamic network with switching topology,” IEEE Trans. Auto. Contr., vol. 53, no. 4, pp. 1009–1013, 2008.

    Article  MathSciNet  Google Scholar 

  36. H. G. Tanner, “On the controllability of nearest neighbor interconnections,” Proc. IEEE Conf. Decision Contr., Bahamas, pp. 2467–2472, 14–17 Dec., 2004.

    Google Scholar 

  37. M. Ji, A. Muhammad, and M. Egerstedt, “Leaderbased multi-agent coordination: Controllability and optimal control,” Proc. Amer. Contr. Conf., USA, pp. 1358–1363, 2006.

    Google Scholar 

  38. M. Ji and M. Egerstedt, “A graph-theoretic characterization of controllability for multi-agent systems,” Proc. Amer. Contr. Conf., USA, pp. 4588–4593, 2007.

    Google Scholar 

  39. M. Zamani and H. Lin, “Structural controllability of multi-agent systems,” Proc. Amer. Contr. Conf., pp. 5743–5748, 2009.

    Google Scholar 

  40. F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, “Controllability of complex networks via pinning,” Phys. Rev. E, vol. 75, no. 4, ID 046103, 2007.

    Google Scholar 

  41. Y. L. Zou and G. Chen, “Pinning controllability of asymmetrical weighted scale-free networks,” Europhys Lett., vol. 84, ID 58005, 2008.

  42. L. Y. **ang, J. J. H. Zhu, F. Chen, and G. Chen, “Controllability of weighted and directed networks with nonidentical node dynamics,” Math. Probl. Eng., vol. 2013, ID: 405034, 2013.

  43. Y. -Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Control centrality and hierarchical structure in complex networks,” PLoS One, vol. 7, ID e44459, 2012.

  44. J. C. Nacher and T. Akutsu, “Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control,” New J. Physics, vol. 14, ID 073005, 2012.

  45. N. J. Cowan, E. J. Chastain, D. A. Vilhena, J. S. Freudenberg, and C. T. Bergstrom, “Nodal dynamics, not degree distributions, determine the structural controllability of complex networks,” PLoS One, vol. 7, ID e38398, 2012.

  46. B. B. Wang, L. Gao, and Y. Gao, “Control range: A controllability-based index for node significance in directed networks,” J. Statist. Mech., vol. 2012, ID P04011, 2012.

  47. M. Porfiria and M. di Bernardo, “Criteria for global pinning-controllability of complex networks,” Automatica, vol. 44, no. 12, pp. 3100–3106, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. DeLelis, M. di Bernardo, and F. Garofalo, “Adaptive pinning control of networks of circuits and systems in Lur’e form,” IEEE Trans. Circ. Syst.-I, vol. 60, no. 11, pp. 3033–3042, 2013.

    Google Scholar 

  49. Y. -Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Observability of complex systems,” Proc. of the National Academy of Sciences of the United States of America, vol. 110, no. 7, pp. 2460–2465, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. P. Chen, X. W. Liu, and W. L. Lu, “Pinning complex networks by a single controller,” IEEE Trans. Circ. Syst.-I, vol. 54, no. 6, pp. 1317–1326, 2007.

    Article  MathSciNet  Google Scholar 

  51. H. S. Su and X. F. Wang, Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning, Springer and Shanghai Jiao Tong Univ. Press, 2013.

    Book  MATH  Google Scholar 

  52. Q. Song and J. D. Cao, “On pinning synchronization of directed and undirected complex dynamical networks,” IEEE Trans. Circ. Syst.-I, vol. 57, no. 3, pp. 672–680, 2010.

    Article  MathSciNet  Google Scholar 

  53. W. W. Yu, G. Chen, J. Lü, and J. Kurths, “Synchronization via pinning control on general complex networks,” SIAM J. Contr. Opim., vol. 51, no. 2, pp. 1395–1416, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Zhou, J.-A. Lu, and J. Lü, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Trans. Auto. Contr., vol. 51, no. 4, pp. 652–656, 2006.

    Article  MathSciNet  Google Scholar 

  55. J. Zhou, J.-A. Lu, and J. Lü, “Pinning adaptive synchronization of a general complex dynamical network,” Automatica, vol. 44, no. 4, pp. 996–1003, 2008; “Erratum,” Automatica, vol. 45, no. 1, pp. 598–599, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  56. H. S. Su, Z. H. Rong, M. Z. Q. Chen, X. F. Wang, G. Chen, and H. Wang, “Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks,” IEEE Trans. Cybern., vol. 43, no. 6, pp. 394–399, 2013.

    Google Scholar 

  57. L. Y. **ang, Z. Q. Chen, Z. X. Liu, F. Chen, and Z. Z. Yuan, “Pinning control of complex dynamical networks with heterogeneous delays,” Computers Math. Appl., vol. 56, no. 5, pp. 1423–1433, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Y. **ang, Z. X. Liu, Z. Q. Chen, and Z. Z. Yuan, “Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers,” Sci. China, Ser.-F, vol. 51, no. 5, pp. 511–523, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  59. X. Li and G. Chen, “Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint,” IEEE Trans. on Circ. Syst.-I, vol. 50, no. 11, pp. 1381–1390, 2003.

    Article  MathSciNet  Google Scholar 

  60. G. H. Wen, W. W. Yu, Y. Zhao, and J. D. Cao, “Pinning synchronization in fixed and switching directed networks of Lorenz-type nodes,” IET Contr. Theory Appl., vol. 7, no. 10, pp. 1387–1397, 2013.

    Article  Google Scholar 

  61. G. B. Koo, J. B. Park, and Y. H. Joo, “Intelligent digital redesign for nonlinear systems using a guaranteed cost control method,” Int. J. Contr., Auto. Syst., vol. 11, no. 6, pp. 1075–1083, 2013.

    Article  Google Scholar 

  62. F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex oscillator networks and smart grids,” Proc. of the National Academy of Sciences of the United States of America, vol. 110, pp. 2005–2010, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanrong Chen.

Additional information

Recommended by Editor-in-Chief Young-Hoon Joo.

This work was supported by the Hong Kong Research Grants Council under the GRF Grant CityU1109/12.

Guanrong Chen received his M.S. degree in Computer Science from Sun Yatsen (Zhongshan) University, China in 1981 and his Ph.D. degree in Applied Mathematics from Texas A&M University, USA in 1987. Currently he is a Chair Professor and the Founding Director of the Centre for Chaos and Complex Networks at the City University of Hong Kong, prior to which he was a tenured Full Professor in the University of Houston, Texas, USA. Prof. Chen is a Fellow of the IEEE since January 1997. He is an ISI Highly Cited Researcher in Engineering as well as in Physics, with non-self-cited H_index 79. He served and is serving as Editor-in-Chief for the IEEE Circuits and Systems Magazine and the International Journal of Bifurcation and Chaos. He received five best journal paper awards in the past, along with 2008 and 2012 State Natural Science Awards of China, and the 2011 Euler Gold Medal from the Euler Foundation, Russia. He was conferred Honorary Doctorate by the Saint Petersburg State University, Russia in 2011, and is Honorary Professor at different ranks in some thirty universities worldwide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Pinning control and synchronization on complex dynamical networks. Int. J. Control Autom. Syst. 12, 221–230 (2014). https://doi.org/10.1007/s12555-014-9001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-014-9001-2

Keywords

Navigation