Log in

An Energy Harvester Based on a Bistable Origami Mechanism

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper describes a vibration energy harvester based on an origami mechanism through piezoelectric energy conversion. The device is capable of broadband energy harvesting from low frequency ambient vibrations. This design utilizes bistability inherent in the waterbomb base origami structure to increase the bandwidth of its frequency response. The folding along the crease pattern of the origami mechanism can facilitate large bending deformations of piezoelectric films to generate high electric power output. The compact size and light weight of the origami mechanism render it convenient for integration into various hosts subjected to vibrations. Performance of the origami mechanism is investigated under external excitations with various vibration magnitudes and acceleration levels. This work demonstrates a scheme of broadband vibration energy harvesting by integration of an origami structure with piezoelectric materials. A high fractional bandwidth of 40% is attained under a sinusoidal excitation with a peak acceleration of 0.1 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aitken, P. H. (1913). Some notes on the history of paper. Bibliographical Society.

    Book  Google Scholar 

  2. Rogers, J., Huang, Y., Schmidt, O. G., & Gracias, D. H. (2016). Origami in MEMS and NEMS. MRS Bulletin, 41, 123–129.

    Article  Google Scholar 

  3. Sorguc, A. G., Hagiwara, I., & Selcuk, S. A. (2009). Origamics in architecture: A medium of inquiry or design in architecture. METU Journal of the Faculty of Architecture, 26, 235–247.

    Article  Google Scholar 

  4. Luan, L.-T., Thang, L.-D., Hung, N.-M., Nguyen, Q.-H., & Nguyen, H.-X. (2021). Optimal design of an origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency. Energy, 219, 119557.

    Article  Google Scholar 

  5. Song, Z., Ma, T., Tang, R., Cheng, Q., Wang, X., Krishnaraju, D., Panat, R., Chan, C. K., Yu, H., & Jiang, H. (2014). Origami lithium-ion batteries. Nature Communications, 5, 3140.

    Article  Google Scholar 

  6. Morgan, J., Magleby, S. P., & Howell, L. L. (2016). An approach to designing origami-adapted aerospace mechanisms. Journal of Mechanical Design, 138, 052301.

    Article  Google Scholar 

  7. Yellowhorse, A., & Howell, L. L. (2018). Deployable lenticular stiffeners for origami-inspired mechanisms. Mechanics Based Design of Structures and Machines, 46(5), 634–649.

    Article  Google Scholar 

  8. Salerno, M., Zhang, K., Menciassi, A., & Dai, J.S. (2014) A novel 4-DOFs origami enabled, SMA actuated, robotic end-effector for minimally invasive surgery. In: Proceedings of the 2014 IEEE international conference on robotics & automation (ICRA), Hong Kong, China, May 31 - June 7 (pp. 2844–2849).

  9. Suzuki, H., & Wood, R. J. (2020). Origami-inspired miniature manipulator for teleoperated microsurgery. Nature Machine Intelligence, 2, 437–446.

    Article  Google Scholar 

  10. Faber, J. A., Arrieta, A. F., & Studart, A. R. (2018). Bioinspired spring origami. Science, 359, 1386–1391.

    Article  Google Scholar 

  11. Treml, N., Gillman, A., Buskohl, P., & Vaia, R. (2018). Origami mechanologic. Proceedings of the National Academy of Sciences, 115(27), 6916–6921.

    Article  Google Scholar 

  12. Miyashita, S., Guitron, S., Yoshida, K., Li, S., Damian, D.D., & Rus, D. (2016) Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, May 16–21 (pp. 909–916).

  13. Shigemune, H., Maeda, S., Hara, Y., Hosoya, N., & Hashimoto, S. (2016). Origami robot: A self-folding paper robot with an electrothermal actuator created by printing. IEEE/ASME Transactions on Mechatronics, 21, 2746–2754.

    Article  Google Scholar 

  14. Belke, C. H., & Paik, J. (2017). Mori: A modular origami robot. IEEE/ASME Transactions on Mechatronics, 22, 2153–2164.

    Article  Google Scholar 

  15. Thota, M., & Wang, K. W. (2018). Tunable waveguiding in origami phononic structures. Journal of Sound and Vibration, 430, 93–100.

    Article  Google Scholar 

  16. Tao, K., Yi, H., Yang, Y., Tang, L., Yang, Z., Wu, J., Chang, H., & Yuan, W. (2020). Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsystems & Nanoengineering, 6, 56.

    Article  Google Scholar 

  17. Miranda, R., Babilio, E., Singh, N., Santos, F., & Fraternali, F. (2020). Mechanics of smart origami sunscreens with energy harvesting ability. Mechanics Research Communications, 105, 103503.

    Article  Google Scholar 

  18. Li, S. (2017). Double-folding paper-based generator for mechanical energy harvesting. Frontiers of Optoelectronics, 10, 38–43.

    Article  Google Scholar 

  19. Wang, Y., Wu, Y., Liu, Q., Wang, X., Cao, J., Cheng, G., Zhang, Z., Ding, J., & Li, K. (2020). Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting. Energy, 212, 118462.

    Article  Google Scholar 

  20. Park, J. J., Won, P., & Ko, S. H. (2019). A Review on hierarchical origami and kirigami structure for engineering applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 147–161.

    Article  Google Scholar 

  21. Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P., & Howell, L. L. (2014). Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Materials and Structures, 23, 094009.

    Article  Google Scholar 

  22. Silverberg, J. L., Na, J.-H., Evans, A. A., Liu, B., Hull, T. C., Santangelo, C. D., Lang, R. L., Hayward, R. C., & Cohen, I. (2015). Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Materials, 14, 389–393.

    Article  Google Scholar 

  23. Pehrson, N.A., Magleby, S.P., & Howell, L.L. (2018) An origami-based thickness-accommodating bistable mechanism in monolithic thick-sheet materials. In: Proceedings of the 2018 international conference on reconfigurable mechanisms and robots (ReMAR), Delft, Netherlands, June 20–22. https://doi.org/10.1109/REMAR.2018.8449875.

  24. Sharma, H., & Upadhyay, S. H. (2020). Geometric design and deployment behavior of origami inspired conical structures. Mechanics Based Design of Structures and Machines. https://doi.org/10.1080/15397734.2020.18337

    Article  Google Scholar 

  25. Lechenault, F., & Adda-Bedia, M. (2015). Generic bistability in creased conical surfaces. Physics Review Letters, 115, 235501.

    Article  Google Scholar 

  26. Waitukaitis, S., Menaut, R., Chen, G.-G., & van Hecke, M. (2015). Origami multistability: From single vertices to metasheets. Physical Review Letters, 114, 055503.

    Article  Google Scholar 

  27. Yasuda, H., Chen, Z., & Yang, J. (2016). Multitransformable leaf-out origami with bistable behavior. Journal of Mechanisms and Robotics, 8, 031013.

    Article  Google Scholar 

  28. Fang, H., Wang, K. W., & Li, S. (2017). Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extreme Mechanics Letters, 17, 7–15.

    Article  Google Scholar 

  29. Filipov, E. T., & Redoutey, M. (2018). Mechanical characteristics of the bistable origami hypar. Extreme Mechanics Letters, 25, 16–26.

    Article  Google Scholar 

  30. Johnson, D. R., Thota, M., Semperlotti, F., & Wang, K. W. (2013). On achieving high and adaptable dam** via a bistable oscillator. Smart Materials and Structures, 22, 115027.

    Article  Google Scholar 

  31. Zhao, J., Sun, C., Kacem, N., Wang, H., Gao, R., Liu, P., & Huang, Y. (2018). A nonlinear resonant mass sensor with enhanced sensitivity and resolution incorporating compressed bistable beam. Journal of Applied Physics, 124, 164503.

    Article  Google Scholar 

  32. Johnson, D. R., Harne, R. L., & Wang, K. W. (2014). A disturbance cancellation perspective on vibration control using a bistable snap-through attachment. Journal of Vibration and Acoustics, 136, 031006.

    Article  Google Scholar 

  33. Shaw, A. D., Neild, S. A., Wagg, D. J., Weaver, P. M., & Carrella, A. (2013). A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. Journal of Sound and Vibration, 332, 6265–6275.

    Article  Google Scholar 

  34. Arrieta, A. F., Hagedorn, P., Erturk, A., & Inman, D. J. (2010). A piezoelectric bistable plate for nonlinear broadband energy harvesting. Applied Physics Letters, 97, 104102.

    Article  Google Scholar 

  35. Lee, A. J., & Inman, D. J. (2018). A multifunctional bistable laminate: Snap-through morphing enabled by broadband energy harvesting. Journal of Intelligent Material Systems and Structures, 29, 2528–2543.

    Article  Google Scholar 

  36. Toyabur, R. M., Salauddin, M., Cho, H., & Park, J. Y. (2018). A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Conversion and Management, 168(2018), 454–466.

    Article  Google Scholar 

  37. Zou, C., & Harne, R. L. (2017). Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers. Smart Materials and Structures, 26, 055021.

    Article  Google Scholar 

  38. Badel, A., & Lefeuvre, E. (2016). Nonlinear conditioning circuits for piezoelectric energy harvesters. Nonlinearity in Energy Harvesting Systems, 25, 321–359.

    Article  Google Scholar 

  39. Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. Wiley.

    MATH  Google Scholar 

  40. Thomson, W. T. (1988). Theory of vibration with applications (3rd ed.). Prentice-Hall Inc.

    Google Scholar 

  41. Fu, Y., Huang, M., Wu, R., Huang, F., Zhou, M., Chen, S., Wang, Q., & Li, Q. (2021). Piezoelectric vibration energy harvesting device based on water sloshing-inspired extensions. AIP Advances, 11, 065205.

    Article  Google Scholar 

  42. Tsukamoto, T., Umino, Y., Shiomi, S., Yamada, K., & Suzuki, T. (2018). Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration. Science and Technology of Advanced Materials, 19, 660–668.

    Article  Google Scholar 

  43. Han, M., Wang, H., Yang, Y., Liang, C., Bai, W., Yan, Z., Li, H., Xue, Y., Wang, X., Akar, B., Zhao, H., Luan, H., Lim, J., Kandela, I., Ameer, G. A., Zhang, Y., Huang, Y., & Rogers, J. A. (2019). Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2, 26–35.

    Article  Google Scholar 

  44. Sohel, R. S. M., Toyabur, R. M., Salauddin, M., Sharma, S., Maharjan, P., Bhatta, T., Cho, H., Park, C., & Park, J. Y. (2021). Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Applied Materials & Interfaces, 13, 4955–4967.

    Article  Google Scholar 

Download references

Acknowledgements

The computing facilities provided by the National Centerfor High-Performance Computing (NCHC) are greatly appreciated. The authors are also thankful for the financial support from the Ministry of Science and Technology, R.O.C., under Grant No. MOST 108-2221-E-005-058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dung-An Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, TH., Chi, IT., Chau, MQ. et al. An Energy Harvester Based on a Bistable Origami Mechanism. Int. J. Precis. Eng. Manuf. 23, 213–226 (2022). https://doi.org/10.1007/s12541-021-00614-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00614-x

Keywords

Navigation