Log in

Effects of Vibration on Microstructure and Thermal Properties of Friction Stir Spot Welded (FSSW) Aluminum Alloy (Al5083)

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Friction stir spot welding (FSSW) is a solid state joining technique with a simple concept. A non-consumable rotating tool with a specially designed pin and shoulder are inserted into the sheets or plates to be joined. In this study, the effect of vibration on microstructure and thermal properties of Al5083 weldment made by FSSW using rotation speed of 1500 rpm and different dwelling times, namely 5 and 10 s, was investigated. This new method was entitled FSSVW (friction-stir-spot-vibration welding). The experimental and numerical results, obtained using Abaqus software, were compared. In this work, the Johnson–Cook hardening condition was used for modeling of deformable metals. The results showed good comparability between experimental and FEM data. Also, metallography analyses indicated that the grain size decreased and the temperature increased as FSSVW method was applied. The results showed that vibration during FSSW leads to grain size decrease of about 30–50% in the weld region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

FSSW:

Friction stir spot welding

FSSVW:

Friction stir spot vibration welding

S-FSSVW:

Simulation of friction stir spot vibration welding

ALE:

Arbitrary Lagrangian–Eulerian

JCP:

Johnson–Cook Plasticity

EDS:

Energy dispersive spectrometry

\(\sigma\) :

Static yield stress (MPa)

\(\varepsilon\) :

Equivalent plastic strain (%)

HAZ:

Heat-affected zone

TMAZ:

Thermo-mechanical affected zone

WNZ:

Weld nugget zone

SZ:

Stir zone

Z:

Zener–Hollomon parameter

R:

Gas constant

SEM:

Scanning electron microscopy

ω:

Rotation speed (rpm)

υ:

Traverse speed (mm/min

References

  1. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50(1–2), 1–78.

    Article  Google Scholar 

  2. Nandan, R., DebRoy, T., & Bhadeshia, H. (2008). Recent advances in friction stir welding process, weldment structure and properties. Progress in Materials Science, 53, 980–1023.

    Article  Google Scholar 

  3. Lee, C. Y., Choi, D. H., Yeon, Y. M., & Jung, S. B. (2009). Dissimilar friction stir spot welding of low carbon steel and AlMg alloy by formation of IMCs. Science and Technology of Welding and Joining, 14(3), 216–220.

    Article  Google Scholar 

  4. Coelho, R. S., Kostka, A., Sheikhi, S., Dos Santos, J., & Pyzalla, A. R. (2009). Microstructure and mechanical properties of an AA6181-T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld. Advanced Engineering Materials, 10(10), 961–972.

    Article  Google Scholar 

  5. Coelho, R. S., Kostka, A., Dos Santos, J., & Pyzalla, A. R. (2009). EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding. Advanced Engineering Materials, 10(12), 1127–1133.

    Article  Google Scholar 

  6. Cavaliere, P., Cerri, E., Marzoli, L., & Dos Santos, J. (2004). Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites. Applied Composite Materials, 11(4), 247–258.

    Article  Google Scholar 

  7. Wert, J. A. (2003). Microstructures of friction stir weld joints between an aluminum-base metal matrix composite and a monolithic aluminum alloy. Scripta Materialia, 49(6), 607–612.

    Article  Google Scholar 

  8. Mishra, R. S., & Mahoney, M. W. (2007). Friction stir welding and processing. Ohio: ASM International.

    Google Scholar 

  9. Ueji, R., Fujii, H., Cui, L., Nishioka, A., Kunishige, K., & Nogi, K. (2006). Friction stir welding of ultrafine grained plain low carbon steel formed by the martensite process. Materials Science and Engineering A, 423(1–2), 324–330.

    Article  Google Scholar 

  10. Fujii, H., Cui, L., Maeda, M., & Nogi, K. (2006). Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Materials Science and Engineering A, 419(1–2), 25–31.

    Article  Google Scholar 

  11. Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., & Nogi, K. (2006). Friction stir welding of carbon steels. Materials Science and Engineering A, 429(1–2), 50–57.

    Article  Google Scholar 

  12. Al-Shahrani, A., & Wynne, B. P. (2010). Effect of dwell time on friction stir spot welded dual phase steel. Advanced Materials Research, 83, 1143–1150.

    Google Scholar 

  13. Su, P., Gerlich, A., North, T. H., & Bendzsak, G. J. (2007). Intermixing in dissimilar friction stir spot welds. Metallurgical and Materials Transactions A, 38(3), 584–595.

    Article  Google Scholar 

  14. Guerra, M., Schmidt, C., McClure, J. C., Murr, L. E., & Nunes, A. C. (2002). Flow patterns during friction stir welding. Materials Characterization, 49(2), 95–101.

    Article  Google Scholar 

  15. Yang, Q., Mironov, S., Sato, Y. S., & Okamoto, K. (2010). Material flow during friction stir spot welding. Materials Science and Engineering A, 527(16–17), 4389–4398.

    Article  Google Scholar 

  16. Tuncel, O., Aydin, H., Tutar, M., & Bayram, A. (2016). Mechanical performance of friction stir spot welded AA6082-T6 sheets. International Journal of Mechanical and Production Engineering, 4(1), 114–118.

    Google Scholar 

  17. Dey, A., Saha, S. C., & Pandey, K. M. (2014). Study of mechanical properties change during friction stir spot welding of aluminum alloys. Current Trends in Technology & Sciences, 3(1), 26–33.

    Google Scholar 

  18. Baek, S. W., Choi, D. H., Lee, S. Y., Ahn, B. W., Yeon, Y. M., Song, K., et al. (2010). Microstructure and mechanical properties of friction stir spot welded galvanized steel. Materials Transactions, 51(5), 1044–1050.

    Article  Google Scholar 

  19. Sheikhhasani, H., Sabet, H., & Abasi, M. (2016). Investigation of the effect of friction stir spot welding of BH galvanized steel plates on process parameters and weld mechanical properties. Engineering Technology & Applied Science Research, 6(5), 1149–1154.

    Google Scholar 

  20. Kulekci, M. K. (2014). Effects of process parameters on tensile shear strength of friction stir spot welded aluminiumalloy (EN AW 5005). Archives of Metallurgy and Materials, 59(1), 221–224.

    Article  Google Scholar 

  21. Jweeg, M., Tolephih, M., Muhammed, M., & Sadiq, G. (2016). Numerical and experimental analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 7020-T53. ARPN Journal of Engineering and Applied Sciences, 11(19), 143–152.

    Google Scholar 

  22. Khuder, A. W. H., Muhammed, M. A., & Ibrahim, H. K. (2017). Numerical and experimental study of temperature distribution in friction stir spot welding of AA2024-T3 Aluminum Alloy. Journal of Innovative Research in Science, Engineering and Technology, 6(5), 7281–7291.

    Google Scholar 

  23. Quazi, I. A., Shete, M. T., & Quazi, M. A. (2015). Thermo-mechanical characterization of friction stir spot welded HDPE sheets. Journal for Science Research and Development, 3(4), 746–769.

    Google Scholar 

  24. Campanelli, L. C., Antonialli, A. I. S., de Alcântara, N. G., Bolfarini, C., Suhuddin, U. F. H., & dos Santos, J. F. (2013). Lap shear test of a magnesium friction spot joint: numerical modeling. Tecnologia em Metalurgia, Materiais e Mineração, 10(2), 97–102.

    Article  Google Scholar 

  25. ASTM-E112-13. (2013). Standard test methods for determining average grain size. West Con shohocken: ASTM International.

    Google Scholar 

  26. ABAQUS/6.14.2. (2016). Providence, RI, USA: Dassault Systems Simulia Corp.

  27. Yalavarthy, H. (2009). Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloys. All Thesis, Clemson University.

  28. Getting Started with Abaqus/Explicit: Hibbit, Karlsson & Sorensen, Inc., version 6.14 (2004).

  29. Belytschko, T., Liu, W., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Hoboken: Wiley.

    MATH  Google Scholar 

  30. Woo, W., Ungar, T., Feng, Z., Kenik, E., & Clausen, B. (2010). X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction-stir-welded aluminum alloy. Metallurgical and Materials Transactions A, 41, 1210–1216.

    Article  Google Scholar 

  31. Abbasi, M., Abdollahzadeh, A., Omidvar, H., & Bagheri, B. (2016). Rezaei M (2016) Incorporation of SiC particles in FS weldedzone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance. International Journal of Materials Research. https://doi.org/10.3139/146.111369.

    Google Scholar 

  32. Etter, A. L., Baudin, T., Fredj, N., & Penelle, R. (2007). Recrystallization mechanisms in 5251-H14 and 5251-O aluminum friction stir welds. Materials Science and Engineering A, 445–446, 94–99.

    Article  Google Scholar 

  33. Callister, W. D. (2007). Materials science and engineering: an introduction. Hoboken: Wiley.

    Google Scholar 

  34. Rahmi, M., & Abbasi, M. (2017). Friction stir vibration welding process: modifed version of friction stir welding process. International Journal of Advanced Manufacturing Technology, 90, 141–151.

    Article  Google Scholar 

  35. Kalaki, A., Ketabchi, M., & Abbasi, M. (2014). The joining of D2 and M2 tool steels: analysis of microstructure and mechanical properties. International Journal of Materials Research, 105, 764–769.

    Article  Google Scholar 

  36. Arbegast, W.J. & Hartley, P.J. (1998). Friction stir weld technology development at Lockheed Martin Michoud space systems- An overview. Proceedings of the Fifth In Con on Trends in Weld Research (pp. 541–554). Pine Mountain, GA, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M. & Givi, M. Effects of Vibration on Microstructure and Thermal Properties of Friction Stir Spot Welded (FSSW) Aluminum Alloy (Al5083). Int. J. Precis. Eng. Manuf. 20, 1219–1227 (2019). https://doi.org/10.1007/s12541-019-00134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00134-9

Keywords

Navigation