Log in

Investigation of mechanical behavior of single- and multi-layer graphene by using molecular dynamics simulation

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Graphene has been researched intensively due to its outstanding mechanical and electrical properties. However, understanding of its behavior in atomic scale is still lacking because of difficulties in experimental methods at this small scale. In this study, molecular dynamics simulation was conducted to evaluate the mechanical behavior and properties of graphene by indenting a spherical rigid tip onto circular graphene flakes. Circular graphene flakes with a diameter of 17 nm were modeled and its elastic modulus was examined with respect to the number of graphene layers. As a result, it was found that the elastic modulus of graphene ranged from 0.92 to 1.08 TPa. In addition, fracture of graphene appeared at a lower indentation depth for the multi-layer graphene compared to that of a single-layer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mak, K. F., Sfeir, M. Y., Wu, Y., Lui, C. H., Misewich, J. A., and Heinz, T. F., “Measurement of the Optical Conductivity of Graphene,” Physical Review Letters, Vol. 101, No. 19, Paper No. 196405, 2008.

    Google Scholar 

  2. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., et al., “Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films,” Advanced Functional Materials, Vol. 19, No. 16, pp. 2577–2583, 2009.

    Article  Google Scholar 

  3. Balandin, A. A., “Thermal Properties of Graphene and Nanostructured Carbon Materials,” Nature Materials, Vol. 10, No. 8, pp. 569–581, 2011.

    Article  Google Scholar 

  4. Lin, L.-Y., Kim, D.-E., Kim, W.-K., and Jun, S.-C., “Friction and Wear Characteristics of Multi-Layer Graphene Films Investigated by Atomic Force Microscopy,” Surface and Coatings Technology, Vol. 205, No. 20, pp. 4864–4869, 2011.

    Article  Google Scholar 

  5. Thangavel, E., Ramasundaram, S., Pitchaimuthu, S., Hong, S. W., Lee, S. Y., et al., “Structural and Tribological Characteristics of Poly (Vinylidene Fluoride)/Functionalized Graphene Oxide Nanocomposite Thin Films,” Composites Science and Technology, Vol. 90, pp. 187–192, 2014.

    Article  Google Scholar 

  6. Kim, H.-J., Yoo, S.-S., and Kim, D.-E., “Nano-Scale Wear: A Review,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709–1718, 2012.

    Article  MathSciNet  Google Scholar 

  7. Penkov, O., Kim, H.-J., Kim, H.-J., and Kim, D.-E., “Tribology of Graphene: A Review,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 577–585, 2014.

    Article  Google Scholar 

  8. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., et al., “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, Vol. 5, No. 8, pp. 574–578, 2010.

    Article  Google Scholar 

  9. Miao, X., Tongay, S., Petterson, M. K., Berke, K., Rinzler, A. G., et al., “High Efficiency Graphene Solar Cells by Chemical Do**,” Nano Letters, Vol. 12, No. 6, pp. 2745–2750, 2012.

    Article  Google Scholar 

  10. Su, F.-Y., You, C., He, Y.-B., Lv, W., Cui, W., et al., “Flexible and Planar Graphene Conductive Additives for Lithium-Ion Batteries,” Journal of Materials Chemistry, Vol. 20, No. 43, pp. 9644–9650, 2010.

    Article  Google Scholar 

  11. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., and Lee, J. H., “Recent Advances in Graphene based Polymer Composites,” Progress in Polymer Science, Vol. 35, No. 11, pp. 1350–1375, 2010.

    Article  Google Scholar 

  12. Jeon, C.-H., Jeong, Y.-H., Seo, J.-J., Tien, H. N., Hong, S.-T., et al., “Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1235–1239, 2014.

    Article  Google Scholar 

  13. Gong, H. H., Park, S. H., Lee, S.-S., and Hong, S. C., “Facile and Scalable Fabrication of Transparent and High Performance Pt/Reduced Graphene Oxide Hybrid Counter Electrode for Dye-Sensitized Solar Cells,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1193–1199, 2014.

    Article  Google Scholar 

  14. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., et al., “Review of Nanocellulose for Sustainable Future Materials,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 197–213, 2015.

    Article  Google Scholar 

  15. Jo, K., Lee, S., Kim, S.-M., In, J. B., Lee, S.-M., et al., “Stacked Bilayer Graphene and Redox-Active Interlayer for Transparent and Flexible High-Performance Supercapacitors,” Chemistry of Materials, Vol. 27, No. 10, pp. 3621–3627, 2015.

    Article  Google Scholar 

  16. Kim, M., Lee, C., and Jang, J., “Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors using Polyaniline/ Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity,” Advanced Functional Materials, Vol. 24, No. 17, pp. 2489–2499, 2014.

    Article  Google Scholar 

  17. Fang, M., Wang, K., Lu, H., Yang, Y., and Nutt, S., “Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites,” Journal of Materials Chemistry, Vol. 19, No. 38, pp. 7098–7105, 2009.

    Article  Google Scholar 

  18. Zhao, X., Zhang, Q., Chen, D., and Lu, P., “Enhanced Mechanical Properties of Graphene-based Poly (Vinyl Alcohol) Composites,” Macromolecules, Vol. 43, No. 5, pp. 2357–2363, 2010.

    Article  Google Scholar 

  19. Lee, C., Wei, X., Kysar, J. W., and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, Vol. 321, No. 5887, pp. 385–388, 2008.

    Article  Google Scholar 

  20. Poot, M. and van der Zant, H. S., “Nanomechanical Properties of Few-Layer Graphene Membranes,” Applied Physics Letters, Vol. 92, No. 6, Paper No. 063111, 2008.

    Google Scholar 

  21. Gao, Y. and Hao, P., “Mechanical Properties of Monolayer Graphene Under Tensile and Compressive Loading,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 41, No. 8, pp. 1561–1566, 2009.

    Article  Google Scholar 

  22. Sakhaee-Pour, A., “Elastic Properties of Single-Layered Graphene Sheet,” Solid State Communications, Vol. 149, No. 1, pp. 91–95, 2009.

    Article  Google Scholar 

  23. Zhang, Y. Y. and Gu, Y. T., “Mechanical Properties of Graphene: Effects of Layer Number, Temperature and Isotope,” Computational Materials Science, Vol. 71, pp. 197–200, 2013.

    Article  Google Scholar 

  24. Pham, A. T., Barisik, M., and Kim, B., “Molecular Dynamics Simulations of Kapitza Length for Argon-Silicon and Water-Silicon Interfaces,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 323–329, 2014.

    Article  Google Scholar 

  25. Wu, Z.-W., Liu, G.-F., Song, S.-X., and Pan, S.-B., “Regeneration and Recycling of Waste Thermosetting Plastics based on Mechanical Thermal Coupling Fields,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 12, pp. 2639–2647, 2014.

    Article  Google Scholar 

  26. Choi, J., Chung, H., Yun, J.-H., and Cho, M., “Photo-Isomerization Effect of the Azobenzene Chain on the Opto-Mechanical Behavior of Nematic Polymer: A Molecular Dynamics Study,” Applied Physics Letters, Vol. 105, No. 22, Paper No. 221906, 2014.

    Google Scholar 

  27. Sung, I.-H., Han, H.-G., and Kong, H., “Nanomechanical Characteristics at an Ultra-Small Particle-Surface Contact Interface,” Journal of Mechanical Science and Technology, Vol. 24, No. 1, pp. 107–110, 2010.

    Article  Google Scholar 

  28. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., “A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons,” Journal of Physics: Condensed Matter, Vol. 14, No. 4, pp. 783–802, 2002.

    Google Scholar 

  29. Neek-Amal, M., Asgari, R., and Tabar, M. R., “The Formation of Atomic Nanoclusters on Graphene Sheets,” Nanotechnology, Vol. 20, No. 13, Paper No. 135602, 2009.

    Google Scholar 

  30. Sung, I.-H. and Kim, D.-E., “Molecular Dynamics Simulation Study of the Nano-Wear Characteristics of Alkanethiol Self-Assembled Monolayers,” Applied Physics A, Vol. 81, No. 1, pp. 109–114, 2005.

    Article  Google Scholar 

  31. Proffen, T., Page, K. L., McLain, S. E., Clausen, B., Darling, T. W., et al., “Atomic Pair Distribution Function analysis of Materials Containing Crystalline and Amorphous Phases,” Zeitschrift für Kristallographie-Crystalline Materials, Vol. 220, No. 12, pp. 1002–1008, 2005.

    Article  Google Scholar 

  32. Thibert, S., Ghis, A., and Delaunay, M., “Mechanical Characterization of Ultrathin DLC Suspended Membranes for CMUT Applications,” Physics Procedia, Vol. 70, pp. 974–977, 2015.

    Article  Google Scholar 

  33. Timoshenko, S. P. and Woinowsky-Krieger, S., “Theory of Plates and Shells,” McGraw-Hill, 2nd Ed., pp. 412–415, 1959.

    Google Scholar 

  34. Kalpakjian, S. and Schmid, S. R., “Manufacturing Processes for Engineering Materials,” Pearson Prentice Hall, 5th Ed., pp. 353–354, 2008.

    Google Scholar 

  35. Chang, S.-W., Nair, A. K., and Buehler, M. J., “Geometry and Temperature Effects of the Interfacial Thermal Conductance in Copperand Nickel-Graphene Nanocomposites,” Journal of Physics: Condensed Matter, Vol. 24, No. 24, Paper No. 245301, 2012.

    Google Scholar 

  36. Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., et al., “Wetting Transparency of Graphene,” Nature Materials, Vol. 11, No. 3, pp. 217–222, 2012.

    Article  Google Scholar 

  37. Jiang, J.-W., Wang, J.-S., and Li, B., “Young’s Modulus of Graphene: A Molecular Dynamics Study,” Physical Review B, Vol. 80, No. 11, Paper No. 113405, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Seo, KJ. & Kim, DE. Investigation of mechanical behavior of single- and multi-layer graphene by using molecular dynamics simulation. Int. J. Precis. Eng. Manuf. 17, 1693–1701 (2016). https://doi.org/10.1007/s12541-016-0196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0196-4

Keywords

Navigation