Log in

Combined 3D printing technologies and material for fabrication of tactile sensors

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Recently, 3D printing technology has taken the spotlight internationally with the recognition of the importance of the manufacturing industry. Currently, there are many mature 3D printing processes and materials. However, an absence of fabrication capability of smart structures such as sensors and actuators remains. In this research, we present a hybrid manufacturing process including directprint/cure (DPC) and projection-based stereolithography, along with printable materials for stretchable tactile sensors. The suggested DPC system consists of a robotically controlled micro-dispensing head, and a light curing module combined with projection stereolithography (PSL) retrofitted from a commercial projector. The materials developed in this research are based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs); this polymer/nanocomposite exhibits the piezoresistive property used in tactile sensing. We also used another hybrid process to develop a tactile sensor using a commercial machine to build the sensor body while a dispensing system was used to create the sensing elements. We have characterized the fabricated sensors with several experiments to detect the locations where forces are applied to the surfaces of the sensors. It is concluded that the suggested processes and materials are promising in develo** accurate and reliable stretchable tactile sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipson, H, and Kurman, M., “Fabricated: The New World of 3D Printing,” John Wiley & Sons, 2013.

    Google Scholar 

  2. Wohlers, T. T., “Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report,” 2013.

    Google Scholar 

  3. Lopes, A. J., MacDonald, E., and Wicker, R. B., “Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication,” Rapid Prototy** Journal, vol. 18, no. 2, pp. 129–143, 2012.

    Article  Google Scholar 

  4. Wicker, R. B. and MacDonald, E. W., “Multi-Material, Multi-Technology Stereolithography: This Feature Article Covers a Decade of Research into Tackling One of the Major Challenges of the Stereolithography Technique, which is Including Multiple Materials in One Construct,” Virtual and Physical Prototy**, vol. 7, no. 3, pp. 181–194, 2012.

    Article  Google Scholar 

  5. Lu, Y., Vatani, M., and Choi, J. W., “Direct-Write/Cure Conductive Polymer Nanocomposites for 3D Structural Electronics,” Journal of Mechanical Science and Technology, vol. 27, no. 10, pp. 2929–2934, 2013.

    Article  Google Scholar 

  6. Kim, M. S., Chu, W. S., Kim, Y. M., Avila, A. P. G., and Ahn, S. H., “Direct Metal Printing of 3D Electrical Circuit Using Rapid Prototy**,” Int. J. Precis. Eng. Manuf., vol. 10, no. 5, pp. 147–150, 2009.

    Article  Google Scholar 

  7. Aguilera, E., Ramos, J., Espalin, D., Cedillos, F., Muse, D., et al., 3D Printing of Electro Mechanical Systems, Proc. of 24th Annual Solid Freeform Fabrication Symposium, pp. 950–961, 2013.

    Google Scholar 

  8. Weiss, L., Merz, R., Prinz, F. B., Neplotnik, G., Padmanabhan, P., et al., “Shape Deposition Manufacturing of Heterogeneous Structures,” Journal of Manufacturing Systems, vol. 16, no. 4, pp. 239–248, 1997.

    Article  Google Scholar 

  9. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I., “Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices,” Proc. of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 589–598, 2012.

    Chapter  Google Scholar 

  10. Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S. I., at al., “Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes,” Science, vol. 323, no. 5921, pp. 1590–1593, 2009.

    Article  Google Scholar 

  11. Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., and Lewis, J. A., “3D Printing of Interdigitated Li-Ion Microbattery Architectures,” Advanced Materials, vol. 25, no. 33, pp. 4539–4543, 2013.

    Article  Google Scholar 

  12. Engeberg, E. D., Vatani, M., and Choi, J. W., “Detection of the Direction and Speed of Motion of Forces on the Surface of a Compliant Tactile Sensor,” Proc. of IEEE 13th International Conference on Control, Automation and Systems, pp. 158–163, 2013.

    Google Scholar 

  13. Engeberg, E. D., Vatani, M., and Choi, J. W., “Direction of Slip Detection For A Biomimetic Tactile Sensor,” Proc. of IEEE 12th International Conference on Control, Automation and Systems, pp. 1933–1937, 2012.

    Google Scholar 

  14. Choi, J. W., Vatani, M., and Engeberg, E. D., “Direct-Write of Multi-Layer Tactile Sensors,” Proc. of IEEE 13th International Conference on Control, Automation and Systems, pp. 164–168, 2013.

    Google Scholar 

  15. Vatani, M., Engeberg, E. D., and Choi, J. W., Force and Slip Detection with Direct-Write Compliant Tactile Sensors using Multi-Walled Carbon Nanotube/Polymer Composites, Sensors and Actuators A: physical, vol. 195, pp. 90–97, 2013.

    Article  Google Scholar 

  16. Arafat, M. T., Gibson, I., and Li, X., “State of the Art and Future Direction of Additive Manufactured Scaffolds-Based Bone Tissue Engineering,” Rapid Prototy** Journal, vol. 20, no. 1, pp. 13–26, 2014.

    Article  Google Scholar 

  17. Geng, L., Feng, W., Hutmacher, D. W., San-Wong, Y., Loh, H. T., and Fuh, J. Y., “Direct Writing of Chitosan Scaffolds using a Robotic System,” Rapid Prototy** Journal, vol. 11, no. 2, pp. 90–97, 2005.

    Article  Google Scholar 

  18. Jiang, C. P., Huang, J. R., and Hsieh, M. F., “Fabrication of Synthesized PCL-PEG-PCL Tissue Engineering Scaffolds using an Air Pressure-Aided Deposition System,” Rapid Prototy** Journal, vol. 17, no. 4, pp. 288–297, 2011.

    Article  Google Scholar 

  19. Khalil, S., Nam, J., and Sun, W., “Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototy** Journal, vol. 11, no. 1, pp. 9–17, 2005.

    Article  Google Scholar 

  20. Phattanaphibul, T., Koomsap, P., Idram, I., and Nachaisit, S., “Development of SVM Rapid Prototy** for Scaffold Fabrication,” Rapid Prototy** Journal, vol. 20, no. 2, pp. 90–104, 2014.

    Article  Google Scholar 

  21. Cohen, D. L., Malone, E., Lipson, H., and Bonassar, L. J., “Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries,” Tissue Engineering, vol. 12, no. 5, pp. 1325–1335, 2006.

    Article  Google Scholar 

  22. Mironov, V., Boland, T., Trusk, T., Forgacs, G., and Markwald, R. R., “Organ Printing: Computer-Aided Jet-based 3D Tissue Engineering,” Trends in Biotechnology, vol. 21, no. 4, pp. 157–161, 2003.

    Article  Google Scholar 

  23. Lewis, J. A. and Gratson, G. M., “Direct Writing in Three Dimensions,” Materials today, vol. 7, no. 7, pp. 32–39, 2004.

    Article  Google Scholar 

  24. Guo, S. Z., Gosselin, F., Guerin, N., Lanouette, A. M., Heuzey, M. C., and Therriault, D., “3D Printing: SolventCast ThreeDimensional Printing of Multifunctional Microsystems (Small 24/2013),” Small, vol. 9, no. 24, pp. 4090–4090, 2013.

    Article  Google Scholar 

  25. Ahn, B. Y., Shoji, D., Hansen, C. J., Hong, E., Dunand, D. C., and Lewis, J. A., “Printed Origami Structures,” Advanced Materials, vol. 22, no. 20, pp. 2251–2254, 2010.

    Article  Google Scholar 

  26. Malone, E. and Lipson, H., “Multi-Material Freeform Fabrication of Active Systems,” Proc. of ASME 9th Biennial Conference on Engineering Systems Design and Analysis, vol. 1, pp. 345–353, 2008.

    Google Scholar 

  27. Vatani, M., Lu, Y., Lee, K.-S., Kim, H.-C., and Choi, J.-W., “Direct-Write Stretchable Sensors using Single-Walled Carbon Nanotube/Polymer Matrix,” Journal of Electronic Packaging, vol. 135, no. 1, Paper No. 011009, 2013.

    Article  Google Scholar 

  28. Ahn, B. Y., Lorang, D. J., Duoss, E. B., and Lewis, J. A., “Direct-Write Assembly of Microperiodic Planar and Spanning ITO Microelectrodes,” Chemical Communications, vol. 46, no. 38, pp. 7118–7120, 2010.

    Article  Google Scholar 

  29. Castillo, S., Muse, D., Medina, F., MacDonald, E., and Wicker, R., “Electronics Integration in Conformal Substrates Fabricated with Additive Layered Manufacturing,” Proc. of the 20th Annual Solid Freeform Fabrication Symposium, pp. 730–737, 2009.

    Google Scholar 

  30. Adams, J. J., Duoss, E. B., Malkowski, T. F., Motala, M. J., Ahn, B. Y., et al., “Conformal Printing of Electrically Small Antennas on Three Dimensional Surfaces,” Advanced Materials, vol. 23, no. 11, pp. 1335–1340, 2011.

    Article  Google Scholar 

  31. Vatani, M., Engeberg, E. D., and Choi, J. W., “Hybrid Additive Manufacturing of 3D Compliant Tactile Sensors,” Proc. of ASME International Mechanical Engineering Congress and Exposition, Vol. 2A, Paper No. V02AT02A004, 2013.

    Google Scholar 

  32. Farahani, R. D., Dalir, H., Le Borgne, V., Gautier, L. A., El Khakani, et al., “Direct-Write Fabrication of Freestanding Nanocomposite Strain Sensors,” Nanotechnology, vol. 23, no. 8, Paper No. 085502, 2012.

    Article  Google Scholar 

  33. Lebel, L. L., Aissa, B., Khakani, M. A. E., and Therriault, D., “Ultraviolet Assisted Direct Write Fabrication of Carbon Nanotube/Polymer Nanocomposite Microcoils,” Advanced Materials, vol. 22, no. 5, pp. 592–596, 2010.

    Article  Google Scholar 

  34. Yousef, H., Boukallel, M., and Althoefer, K., “Tactile Sensing for Dexterous In-Hand Manipulation in Robotics-a Review,” Sensors and Actuators A: Physical, vol. 167, no. 2, pp. 171–187, 2011.

    Article  Google Scholar 

  35. Tiwana, M. I., Redmond, S. J., and Lovell, N. H., “A Review of Tactile Sensing Technologies with Applications in Biomedical Engineering,” Sensors and Actuators A: Physical, vol. 179, pp. 17–31, 2012.p

    Article  Google Scholar 

  36. Engeberg, E. D. and Meek, S. G., “Adaptive Sliding Mode Control for Prosthetic Hands to Simultaneously Prevent Slip and Minimize Deformation of Grasped Objects,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 1, pp. 376–385, 2013.

    Article  Google Scholar 

  37. Karnati, N., Kent, B. A., and Engeberg, E. D., “Bioinspired Sinusoidal Finger Joint Synergies for a Dexterous Robotic Hand to Screw and Unscrew Objects with Different Diameters,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 612–623, 2013.

    Article  Google Scholar 

  38. Engeberg, E. D., Meek, S. G., and Minor, M. A., “Hybrid Force-Velocity Sliding Mode Control of a Prosthetic Hand,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 5, pp. 1572–1581, 2008.

    Article  Google Scholar 

  39. Wettels, N., Parnandi, A. R., Moon, J. H., Loeb, G. E., and Sukhatme, G., “Grip Control Using Biomimetic Tactile Sensing Systems,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 718–723, 2009.

    Article  Google Scholar 

  40. Rocha, J. G., Santos, C., Cabral, J. M., and Lanceros-Mendez, S., “3 Axis Capacitive Tactile Sensor and Readout Electronics,” Proc. of IEEE International Symposium on Industrial Electronics, vol. 4, pp. 2767–2772, 2006.

    Google Scholar 

  41. Ohmura, Y., Kuniyoshi, Y., and Nagakubo, A., “Conformable and Scalable Tactile Sensor Skin for Curved Surfaces,” Prof. of IEEE International Conference on Robotics and Automation, pp. 1348–1353, 2006.

    Google Scholar 

  42. Hammond, F. L., Kramer, R. K., Wan, Q., Howe, R. D., and Wood, R. J., “Soft Tactile Sensor Arrays for Micromanipulation,” Proc. of in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 25–32, 2012.

    Google Scholar 

  43. Kim, M. S., Shin, H. J., and Park, Y. K., “Design Concept of High-Performance Flexible Tactile Sensors with a Robust Structure,” Int. J. Precis. Eng. Manuf., vol. 13, no. 11, pp. 1941–1947, 2012.

    Article  Google Scholar 

  44. Elango, N., Faudzi, A. A. M., Hassan, A., and Rusydi, M. R. M., “Experimental Investigations of Skin-Like Material and Computation of Its Material Properties,” Int. J. Precis. Eng. Manuf., vol. 15, no. 9, pp. 1909–1914, 2014.

    Article  Google Scholar 

  45. Zhang, Y. F., Liu, Y. W., **, M. H., and Liu, H., “Design of a Finger-Tip Flexible Tactile Sensor for an Anthropomorphic Robot Hand,” Springer, pp. 762–773, 2010.

    Google Scholar 

  46. Yu, J., Grossiord, N., Koning, C. E., and Loos, J., “Controlling the Dispersion of Multi-Wall Carbon Nanotubes in Aqueous Surfactant Solution,” Carbon, vol. 45, no. 3, pp. 618–623, 2007.

    Article  Google Scholar 

  47. Choi, J. W., MacDonald, E., and Wicker, R., “Multi-Material Microstereolithography,” The International Journal of Advanced Manufacturing Technology, vol. 49, no. 5–8, pp. 543–551, 2010.

    Article  Google Scholar 

  48. Vatani, M., Engeberg, E. D., and Choi, J. W., “Detection of the Position, Direction and Speed of Sliding Contact with a Multi-Layer Compliant Tactile Sensor Fabricated using Direct-Print Technology,” Smart Materials and Structures, vol. 23, no. 9, Paper No. 095008, 2014.

    Google Scholar 

  49. Johnson, K. O., Yoshioka, T., and Vega-Bermudez, F., “Tactile Functions of Mechanoreceptive Afferents Innervating the Hand,” Journal of Clinical Neurophysiology, vol. 17, no. 6, pp. 539–558, 2000.

    Article  Google Scholar 

  50. Srinivasan, M. A., Whitehouse, J., and LaMotte, R. H., “Tactile Detection of Slip: Surface Microgeometry and Peripheral Neural Codes,” Journal of Neurophysiology, vol. 63, no. 6, pp. 1323–1332, 1990.

    Google Scholar 

  51. Johnson, K. O., “The Roles and Functions of Cutaneous Mechanoreceptors,” Current Opinion in Neurobiology, vol. 11, no. 4, pp. 455–461, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Won Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatani, M., Lu, Y., Engeberg, E.D. et al. Combined 3D printing technologies and material for fabrication of tactile sensors. Int. J. Precis. Eng. Manuf. 16, 1375–1383 (2015). https://doi.org/10.1007/s12541-015-0181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0181-3

Keywords

Navigation