Log in

Effects of Foil Thickness to Grain Size (t/d) Ratio and Prestraining on Tensile Response, Microformability and Crystallographic Texture of Ultra-Low Carbon Steel Thin Foils

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ultra-low carbon (ULC) steels, containing a carbon content ~ 0.055 wt%, have been used in several applications in the form of thin foils. However, there are limited studies on the effects of foil thickness (t) to grain size (d) ratio and foil condition on the tensile response and formability of thin ULC steel foils. In the present work, the tensile and forming behaviours of ULC steel foils of thickness about 400 µm were evaluated in both annealed and prestrained (by cold reduction to 2–7%) conditions as a function of t/d ratio and followed by detailed texture evolution analysis. Vacuum annealing was used to achieve varying t/d ratios in the specimens. Additionally, thin ULC steel foils of 100 μm thickness in annealed condition were also used for examining the thickness effect. Microstructural analysis was performed using the electron backscattered diffraction technique. Microformability was assessed by a miniaturised Nakazima test setup with specimen geometries designed to produce three different strain paths. The annealed foils displayed a typical yield-point phenomenon, but the total yield-point elongation decreased with decreasing thickness and grain size. The foils exhibited typical Hall–Petch strengthening, cold work hardening, and forming limit curves; however, there were substantial reductions in both tensile strength and ductility, and consequently, the forming strains, with decreasing the t/d ratio. The tensile response and formability of the foils were adversely affected by both thinning and prestraining. The texture studies revealed the formation of a γ-fibre i.e., < 111 >||normal direction, and its intensity varied significantly with the t/d ratio and mode of strain path.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.T. Llewellyn, R.C. Hudd, Steels: Metallurgy and Applications (Butterworth-Heinemann, Oxford, 1998)

    Google Scholar 

  2. C. Capdevila, C. Garcia-Mateo, F.G. Caballero, C. Garcia de Andres, Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Comp. Mater. Sci. 38, 192–201 (2006). https://doi.org/10.1016/j.commatsci.2006.02.005

    Article  CAS  Google Scholar 

  3. P. Antoine, S. Vandeputte, J.B. Vogt, Effect of microstructure on strain-hardening behaviour of a Ti-IF steel grade. ISIJ Int. 45, 399–404 (2005). https://doi.org/10.2355/isi**ternational.45.399

    Article  CAS  Google Scholar 

  4. P. Antoine, S. Vandeputte, J.B. Vogt, Empirical model predicting the value of the strain-hardening exponent of a Ti-IF steel grade. Mater. Sci. Eng. A 433, 55–63 (2006). https://doi.org/10.1016/j.msea.2006.06.030

    Article  CAS  Google Scholar 

  5. C. Capdevila, J.P. Ferrer, F.G. Caballero, C. Garcia de Andres, Influence of processing parameters on the recrystallized microstructure of extra-low-carbon steels. Metall. Mater. Trans. A 37, 2059–2068 (2006). https://doi.org/10.1007/bf02586126

    Article  Google Scholar 

  6. G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1976)

    Google Scholar 

  7. W.F. Hosford, Mechanical Behavior of Materials (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/s0001924000088126

    Book  Google Scholar 

  8. G. Simons, Ch. Weippert, J. Dual, J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater. Sci. Eng. A 416, 290–299 (2006). https://doi.org/10.1016/j.msea.2005.10.060

    Article  CAS  Google Scholar 

  9. M. Klein, A. Hadrboletz, B. Weiss, G. Khatibi, The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater. Sci. Eng. A 319, 924–928 (2001). https://doi.org/10.1016/s0921-5093(01)01043-7

    Article  Google Scholar 

  10. J. Kim, R. Golle, H. Hoffmann, Investigation of size effects of very thin aluminum and copper sheets using aero-bulge test. Mater. Sci. Eng. A 527, 7220–7224 (2010). https://doi.org/10.1016/j.msea.2010.07.076

    Article  CAS  Google Scholar 

  11. M.W. Fu, W.L. Chan, A review on the state-of-the-art microforming technologies. Int. J. Adv. Manuf. Technol. 67, 2411–2437 (2013). https://doi.org/10.1007/s00170-012-4661-7

    Article  Google Scholar 

  12. J. Sahu, S. Chakrabarty, R. Raghavan, S. Mishra, Investigations of size effect on formability and microstructure evolution in SS304 thin foils. J. Strain Anal. 53(7), 517–528 (2018). https://doi.org/10.1177/0309324718792443

    Article  Google Scholar 

  13. E. Hoggan, R. Scott, M.R. Barnett, P.D. Hodgson, Mechanical properties of tension levelled and skin passed steels. J. Mater. Proc. Technol. 125, 155–163 (2002). https://doi.org/10.1016/s0924-0136(02)00368-0

    Article  Google Scholar 

  14. C.H. Chen, R.S. Lee, J.T. Gau, Size effect and forming-limit strain prediction for microscale sheet metal forming of stainless steel 304. J. Strain Anal. Eng. Design 45, 283–299 (2010). https://doi.org/10.1243/03093247jsa585

    Article  Google Scholar 

  15. J.S.H. Lake, Control of discontinuous yielding by temper rolling. J. Mech. Work. Technol. 12, 35–66 (1985). https://doi.org/10.1016/0378-3804(85)90041-5

    Article  CAS  Google Scholar 

  16. J.-R. Kim, A. Eun-Yeong, H. Das, J. Yong-Ha, H. Sung-Tae, M. Miles, L. Kwang-**, Effect of tool geometry and process parameters on mechanical properties of friction stir spot welded dissimilar aluminum alloys. Int. J. Prec. Eng. Manuf. 18, 445–452 (2017). https://doi.org/10.1007/s12541-017-0053-0

    Article  CAS  Google Scholar 

  17. J.S. Ibrahim, R.T. Mathew, M.J.N.V. Prasad, K. Narasimhan, Processing and specimen thickness to grain size (t/d) ratio effects on tensile behaviour and microformability of copper foils. Met. Mater. Int. 28, 2340–2355 (2022). https://doi.org/10.1007/s12540-021-01145-w

    Article  Google Scholar 

  18. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th edn. (Cengage Learning, USA, 2009)

    Google Scholar 

  19. W.G. Johnston, J.J. Gilman, Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. App. Phys. 30, 129–144 (1959). https://doi.org/10.1063/1.1735121

    Article  CAS  Google Scholar 

  20. E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64, 747 (1951). https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  21. N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    CAS  Google Scholar 

  22. S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra-fine grained steels. J. Mater. Proc. Technol. 117, 359–363 (2001). https://doi.org/10.1016/s0924-0136(01)00797-x

    Article  CAS  Google Scholar 

  23. K. Takeda, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of interstitial elements on Hall–Petch coefficient of ferritic iron. ISIJ Int. 48, 1122–1125 (2008). https://doi.org/10.2355/isi**ternational.48.1122

    Article  CAS  Google Scholar 

  24. L.L. Yang, T. Nakagaito, Y. Funakawa, K. Kojima, change in yield strength of Nb-bearing ultra-low carbon steels by temper-rolling. Mater. Sci. Forum 941, 230–235 (2018). https://doi.org/10.4028/www.scientific.net/msf.941.230

    Article  Google Scholar 

  25. A.D. Rollett, U.F. Kocks, A review of the stages of work hardening. Solid State Phen. 35-36, 1–18 (1993). https://doi.org/10.4028/www.scientific.net/ssp.35-36.1

    Article  Google Scholar 

  26. Y. Akiniwa, T. Suzuki, K. Tanaka, Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method. Mater. Sci. Forum 524, 807–812 (2006). https://doi.org/10.4028/www.scientific.net/msf.524-525.807

    Article  Google Scholar 

  27. C. Shen, Z. Zhu, D. Zhu, J. Ren, Copper deposits with high tensile strength and elongation electroformed in an ultra-low-concentration sulfate bath without additives. J Mater Eng Perf 26, 987–992 (2017). https://doi.org/10.1007/s11665-016-2494-5

    Article  CAS  Google Scholar 

  28. S. Fujiwara, K. Abiko, Ductility of ultra high purity copper. Le J. de Phys. IV 5, C7-295 (1995). https://doi.org/10.1051/jp4:1995735

    Article  Google Scholar 

  29. M. Shakeri, A. Sadough, B.M. Dariani, Effect of pre-straining and grain size on the limit strains in sheet metal forming. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 214, 821–827 (2000). https://doi.org/10.1243/0954405001517892

    Article  Google Scholar 

  30. W.L. Chan, M.F. Fu, J. Lu, J.G. Liu, Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater. Sci. Eng. A 527, 6638–6648 (2010). https://doi.org/10.1016/j.msea.2010.07.009

    Article  CAS  Google Scholar 

  31. L.F. Peng, Z.T. Xu, M.F. Fu, X.M. Lai, Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria. Int. J. Mech. Sci. 120, 190–203 (2017). https://doi.org/10.1016/j.ijmecsci.2016.11.021

    Article  Google Scholar 

  32. B. Meng, Y.Y. Zhang, C. Cheng, J.Q. Han, M. Wan, Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil. Int. J. Mech. Sci. 148, 620–635 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.027

    Article  Google Scholar 

  33. P. Van Houtte, L. Delannay, I. Samajdar, Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Text. Stress Microstruct. 31, 109–149 (1999). https://doi.org/10.1155/2008/173083

    Article  CAS  Google Scholar 

  34. I. Samajdar, B. Verlinden, P. Van Houtte, Developments in macro and micro texture during plane strain channel die compression of IF steel. ISIJ Int. 38, 759–765 (1998). https://doi.org/10.2355/isi**ternational.38.759

    Article  Google Scholar 

  35. S.K. Yerra, H.V. Vankudre, P.P. Date, I. Samajdar, Effect of strain path and the magnitude of prestrain on the formability of a low carbon steel: on the textural and microtextural developments. J. Eng. Mater. Technol. 126, 53–61 (2004). https://doi.org/10.1007/s10749-019-01047-3

    Article  CAS  Google Scholar 

  36. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, Cambridge, 2008). https://doi.org/10.1017/cbo9780511810947

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M/s Theis Precision Steel India Private Limited for providing us ULC steel sheets and foils for the present study. The authors would like to thank the OIM-Texture lab, IIT Bombay for giving access to the EBSD and XRD texture facilities. The authors acknowledge the FIST-UTM (Mechanical characterization) lab for providing the UTM for conducting the tensile and forming experiments. The authors are thankful to Prof. Pradeep Dixit, Department of Mechanical Engineering, IIT Bombay for facilitating to use the Olympus DSX100 opto-digital microscope.

Funding

No funding is received for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed S. Ibrahim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, J.S., Prasad, M.J.N.V., Sarkar, P. et al. Effects of Foil Thickness to Grain Size (t/d) Ratio and Prestraining on Tensile Response, Microformability and Crystallographic Texture of Ultra-Low Carbon Steel Thin Foils. Met. Mater. Int. 30, 348–359 (2024). https://doi.org/10.1007/s12540-023-01520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01520-9

Keywords

Navigation